Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние легирующих элементов на превращения и свойства стали

ЛЕГИРОВАННЫЕ СТАЛИ И ИХ КЛАССИФИКАЦИЯ Влияние легирующих элементов на превращения и свойства стали  [c.290]

Механические свойства хромоникелевых нержавеющих сталей аустенитного класса п-ри низких температурах зависят от химического состава стали и стабильности аустенита, определяемой положением точки мартенситного превращения. Эффективность действия ряда элементов на понижение температуры мартенситного превращения увеличивается в следующем порядке 51, Мп, Сг, N1, С, N. При рассмотрении влияния легирующих элементов на превращение аустенита в мартенсит необходимо учитывать только количество хрома и углерода, находящихся в твердом растворе, а не в карбидах. Стали с более стабильным аустенитом имеют и более высокие запасы ударной вязкости. В связи с этим аустенитные хромоникелевые стали типа 18-8 нашли широкое применение в криогенной технике.  [c.190]


Превращения при пагреве закаленной стали. Строение и свойства структур отпуска. Влияние легирующих элементов на превращения при отпуске.  [c.7]

Таково в общих чертах влияние легирующих элементов на структуру, превращения и свойства легированных сталей.  [c.51]

Влияние легирующих элементе на свойства стали заключается в основном в воздействии их на характер превращения переохлаждённого аустените и на состав карбидных или интерметаллидных фаз, образующихся в стали и выделяющихся в процессе распада мартенсита при отпуске.  [c.73]

В отличие от ранее изданных учебников в настоящей книге нет отдельной главы, посвященной влиянию легирующих элементов на свойства и фазовые превращения в стали. Общие сведения  [c.3]

Теоретическое значение таких диаграмм заключается в том, что они хотя и охватывают меньший опытный материал в сравнении с диаграммой сплавов железа с углеродом, так как для сталей с неодинаковым содержанием углерода и разных марок они различны, но зато содержат чрезвычайно важный фактор времени. Диаграммы изотермического превращения аустенита дают картину всех изменений аустенита (кинетику его превращения) при разных температурах, позволяют в наглядной форме объяснить происхождение и природу структур, получаемых при термической обработке. Они выявляют влияние температуры превращения на структуру и свойства стали. Эти диаграммы позволяют оценить действие величины зерна и легирующих элементов на превращение аустенита, глубину прокаливаемости, микроструктуру, механические и другие свойства стали. Наконец, они служат обоснованием теории термической обработки стали.  [c.178]

Наиболее распространенными легирующими элементами при производстве низколегированных сталей являются 51, Мп, Сг, Мо. Анализ их влияния на кинетику превращения аустенита при охлаждении в условиях сварки можно провести по результатам работ [92—94 ]. Химический состав и механические свойства сталей представлены в табл. 6.9. Данные, характеризующие влияние легирующих элементов на характеристические длительности охлаждения и фазовый состав структуры, приведены на рис. 6.4.  [c.117]

З. ВЛИЯНИЕ ЛЕГИРУЮЩИХ ЭЛЕМЕНТОВ НА СТРУКТУРУ, ФАЗОВЫЕ. ПРЕВРАЩЕНИЯ И СВОЙСТВА КОНСТРУКЦИОННЫХ СТАЛЕЙ  [c.53]

Отпуск в значительной степени изменяет структуру и свойства стали, особенно в том случае, когда превращение аустенита при закалке происходит в мартенситной области. Эти изменения существенно зависят от содержания углерода в стали и легирующих элементов, которые оказывают большое влияние на дисперсность структуры и поведение остаточного аустенита, а также и от режима отпуска, т. е. температуры и его продолжительности.  [c.82]


Сопротивление деформированию инструментальных Сталей в основном зависит от процентного содержания углерода. Чем больше в них углерода, тем ниже пластичность и выше сопротивление деформированию. Наличие в этих сталях вредных примесей (особенно серы и фосфора) приводит к понижению пластичности из-за появления красно- или синеломкости. Влияние легируюш,их элементов иа пластичность и механические свойства инструментальных сталей происходит вследствие замещения в решетке атомов железа атомами легирующего элемента. На основе физико-химических (коэффициента теплопроводности, температуры фазовых превращений и др.) и механических свойств (пластичности, сопротивления деформирования устанавливают температурный режим нагрева металла под ковку, температуру начала и конца ковки, выбор схемы процесса ковки и формы бойков, а также степень и скорость деформации.  [c.495]

Монография состоит из семи глав. В гл. I рассмотрены основные положения теории фазовых превращений в металлах и сплавах в твердом состоянии, а также закономерности превращений железа, титана и их сплавов в изотермических условиях. В гл. II показаны условия их протекания в зоне термического влияния при сварке плавлением. В гл. III описаны новые методы и аппаратура для изучения кинетики фазовых превращений и изменений структуры и свойств металлов в неравновесных условиях при сварке и термомеханической обработке, а также для исследования задержанного разрушения и образования холодных трещин. В гл. IV приведены результаты исследования превращений при непрерывном нагреве, кинетики роста зерна и гомогенизации аустенита и Р-фазы сплавов титана при сварке. В гл. V рассмотрены основные закономерности фазовых превращений в условиях непрерывного охлаждения при сварке. В гл. VI изложен механизм задержанного разрушения сталей и сплавов титана, установлены критерии оценки этого явления и показано влияние легирующих элементов, параметров термического цикла и жесткости сварных соединений на" сопротивляемость этих материалов образованию холодных трещин при сварке. В гл. VII приведены характеристики свариваемости сталей и сплавов титана различных структурных классов и систем легирования, сформулированы критерии выбора технологии и режимов их сварки и показаны пути регулирования структуры и свойств сварных соединений как в процессе сварки, так и при последующей термической, термомеханической или механико-термической обработке.  [c.10]

Превращения при охлаждении стали из аустенитного состояния. Диаграмма изотермического распада переохлажденного аустенита углеродистой эвтектоидной стали. Перлитное превращение. Свойства перлита, сорбита и троостита. Мартенситное превращение, его основные особенности. Строение и свойства мартенсита. Промежуточное превращение. Влияние углерода и легирующих элементов на распад переохлажденного аустенита. Превращения переохлажденного аустенита при непрерывном охлаждении. Критические скорости охлаждения и факторы, влияющие на них.  [c.7]

И снижение температуры мартенситного превращения (точки Мн) в результате присадки аустенитообразующих элементов (Ni, Мп, N, С и частично Сг) приводит к образованию сталей переходного класса с аустенито-мартенситной структурой и соответствующему изменению свойств. Содержание легирующих элементов в сталях этого типа оказывает большое влияние на процесс превращения у -> и должно находиться в достаточно узких пределах.  [c.140]

Легирующие элементы, оказывая влияние на полиморфизм железа и превращения в стали при термической обработке, а также вызывая изменения фазового состава и структуры, оказывают существенное влияние на механические и эксплуатационные свойства сталей.  [c.80]

Легированные стали обладают наилучшими механическими свойствами после термической обработки. Это объясняется тем, что легирующие элементы задерживают диффузионные процессы и оказывают поэтому большое влияние на фазовые превращения, протекающие в стали при закалке и отпуске. Легирующие элементы повышают устойчивость закаленной стали против отпуска. Для  [c.271]


Учение об изменении внутреннего строения и физико-механических свойств сплавов в результате теплового воздействия, не исчезающих после прекращения этого воздействия, составляет теоретические основы термической обработки. Общее представление о превращениях, протекающих в железоуглеродистых сплавах в результате теплового воздействия, можно получить из диаграммы состояния железо — цементит и железо — углерод. Как в сталях, так и в чугунах всегда присутствуют кремний, марганец, фосфор, сера, а в легированных сплавах — никель, хром, молибден, медь, ванадий, титан и др. Легирующие элементы и примеси изменяют положение линий диаграммы, на которых отложены критические точки структурных превращений. Одни элементы снижают температуру превращений, а другие — повышают. Без учета влияния этих элементов невозможно правильно, пользуясь только лишь диаграммой, разработать режимы термической обработки.  [c.92]

Для сварных конструкций следует применять марки сталей, обладающих требуемыми механическими свойствами при возможно более низком содержании углерода и легирующих элементов, повышающих восприимчивость стали к закалке. Следует также ограничивать содержание этих элементов в металле шва. Первостепенное влияние углерода на образование холодных трещин обусловлено тем, что он во многом определяет положение температурного интервала мартенситного превращения аустенита, в свою очередь определяющего как вероятность зарождения холодных трещин, так и их развитие.  [c.531]

Критические точки сталей и влияние на них легирующих элементов. Превращения, происходящие при нагреве стали. Рост зерна аустенита. Перегрев и пережог. Влияние размера зерна на свойства стали.  [c.7]

Для изготовления деталей применяют сталь марки 40ХГТР. Расшифруйте состав стали и определите группу стали по назначению. Назначьте режим термической обработки. Приведите механические свойства стали после термической обработки. Объясните влияние легирующих элементов на превращения и свойства стали.  [c.155]

В ряде работ отмечается косвенное влияние легирующих элементов на механические свойства закаленной и низкоотпу-щенной стали, главным образом за счет понижения начала мартенситного превращения [319—321].  [c.338]

Рассмотрены принципы легирования и научные основы создания различных групп сталей Систематизированы 1егирующие элементы за кономерности образования и поведения различных фаз в легированных сталях и влияние легирующих элементов на фазовые превращения Из ложены основы легирования и данные о составе свойствах и обработ ке различных групп специальных сталей строительных машинострои тельных коррознонностонких жаропрочных, инструментальных  [c.1]

Коррозионная стойкость стали в атмосферных условиях резко возрастает при введении даже незначительного количества легирующих элементов, поэтому применение низколегированных сталей в качестве строительных и конструкщюнных материалов, эксплуатируемых в атмосферных условиях, экономически выгодно долговечность сооружений может быть повышена в 2-3 раза без дополнительной защиты в условиях промышленной, городской и сельской атмосферы. Защитное действие легирующих элементов в атмосферостойких низколегированных сталях основано на том, что легирующие элементы либо их соединения тормозят обычные фазовые превращения в ржавчине (см. рис. 1), и поэтому слой ржавчины на атмосферостойкой стали уплотняется. Считается также, что наряду с усилением защитных свойств слоя продуктов коррозии основной причиной положительного влияния меди является возникновение анодной пассивности стали за счет усиления эффективности катодной реакщш. Действие меди как эффективного катода подтверждается тем, что ее положительное влияние наблюдается уже в начальных стадиях коррозии, когда на поверхности стали еще не образовался слой видимых продуктов коррозии.  [c.12]

Содержание легирующих элементов в сталях этого типа оказывает большое влияние на процесс превращения у М и должно находиться в достаточно узких пределах, что вытекает из диаграмм зависимости прочностных свойств от легирования и термической обработки (рис. 135 136). Аустенито-мартенситные стали, химический состав которых приведен в табл. 95 и 96, получили практическое применение. Больше всего используются хромоникелевые стали типа 17-7 с неустойчивым аустенитом с присадками алюминия или титана (17-7РН, 17-7 W и РН15-7Мо, Х15Н90, Х17Н7Ю и др.) [213—223, 639, 702).  [c.246]

Легирующие элементы оказьшают влияние на свойства феррита, положение критических точек в стали, кинетику у -<-> а-превращения и размер зерна.  [c.598]

Отрицательное влияние таких грубых карбидных выделений на свойства крупных поковок не удается компенсировать положительным влиянием снижения температурного интервала бейнитного превращения аустенита, образовавшегося в межкритической области, по сравнению с аустенитом, полученным выше точки Ас при обычной схеме термической обработки. Поэтому считают [39, 252], что для крупных поковок технология термической обработки из межкритического интервала температур не является оптимальной. По-видимому, более благоприятными являются перспективы использования такой технологии для деталей, изготовленных из сталей, например, на марганцевоникелевой основе, структура и механические свойства которых регулируются в основном не карбидным упрочнением, а легирующими элементами в твердом растворе.  [c.198]



Смотреть страницы где упоминается термин Влияние легирующих элементов на превращения и свойства стали : [c.12]    [c.703]    [c.128]   
Смотреть главы в:

Металлы и сплавы Справочник  -> Влияние легирующих элементов на превращения и свойства стали



ПОИСК



141 — Влияние на свойства

Влияние легирующее

Влияние легирующих элементов на превращения в стали

Влияние легирующих элементов на свойства стали

ЛЕГИРОВАННЫЕ СТАЛИ Влияние легирующих элементов

Легированные стали —

Легирующие элементы

Легирующие элементы в стали

Превращение

Стали влияние легирующих

Стали элементов

Элементы Свойства

см Свойства — Влияние легирующих

см Элементы легирующие — Влияние



© 2025 Mash-xxl.info Реклама на сайте