Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стали влияние легирующих

Так как повышение содержания углерода в сталях ухудшает их свариваемость, то в низколегированных сталях, применяемых в сварных конструкциях, количество углерода ограничивают до 0,23 %. Этим достигается хорошая или удовлетворительная свариваемость сталей. Влияние легирующих элементов учитывается различным образом, в том числе определением эквивалентного содержания углерода на основании эмпирических зависимостей, например  [c.508]


ЛЕГИРОВАННЫЕ КОНСТРУКЦИОННЫЕ СТАЛИ ВЛИЯНИЕ ЛЕГИРУЮЩИХ ЭЛЕМЕНТОВ НА СТРУКТУРУ И СВОЙСТВА СТАЛИ Классификация примесей  [c.320]

ВЛИЯНИЕ ЛЕГИРУЮЩИХ ЭЛЕМЕНТОВ НА ПРЕВРАЩЕНИЯ В СТАЛИ  [c.355]

МЕХАНИЧЕСКИЕ СВОЙСТВА СТАЛИ, ВЛИЯНИЕ СТРУКТУРЫ И ЛЕГИРУЮЩИХ ЭЛЕМЕНТОВ  [c.364]

ВЛИЯНИЕ ЛЕГИРУЮЩИХ ЭЛЕМЕНТОВ НА СТРУКТУРУ, ПРОЦЕССЫ ПРЕВРАЩЕНИЯ И ТЕХНОЛОГИЮ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СТАЛИ  [c.155]

Мартенситное превращение одинаково для различных сталей. Однако легирующие элементы изменяют интервал температур аустенитно-мартенситного превращения, а это приводит к изменению количества остаточного аустенита (рис. 11.17). Почти все легирующие элементы снижают мартенситную точку Л4 и увеличивают количество остаточного аустенита. С увеличением содержания С усиливается влияние легирующих элементов на положение точки М . При обычном содержании С зависимость температуры мартенситной точки и количества остаточного аустенита от количества легирующих элементов почти линейная. Легирующие элементы, снижающие точку М , снижают и зону  [c.168]

Рис 11 19. Влияние легирующих элементов на прокаливаем ость стали  [c.171]

Влияние легирующих элементов Высокая жаропрочность стали достигается путем легирования ее хромом, никелем, молибденом, вольфрамом, ниобием, ванадием, ко()альтом, титаном, алюминием и другими элементами.  [c.48]

Рис. 190. Влияние легирующих элементов на параметры термостойкости стали Рис. 190. <a href="/info/58162">Влияние легирующих элементов</a> на параметры термостойкости стали
Определение влияния легирующих элементов на коррозионную стойкость сталей  [c.89]

Влияние легирующих элемен тов на превращение аустенита. Большинство сталей представляют собой многокомпонентные системы, которые наряду с углеродом содержат также легирующие элементы (Сг, Мп, Ni, W, Мо, Ti, Nb, V и др.).  [c.118]

Легирующие элементы по-разному влияют на условия равновесия. В сплавах железа никель и марганец понижают критическую точку и повышают точку Л4, расширяя тем самым область -фазы (рис. 85, а), т. е. способствуют образованию аустенита. Элементы Сг, W, Мо, Si, V повышают точку A3 и понижают точку Л4, сужая тем самым 7-область (рис. 85, б), т. е. способствуют стабилизации феррита. Большинство легирующих элементов влияют на кинетику превращения аустенита, как правило, замедляя его последнее объясняется тем, что диффузия легирующих элементов, образующих твердые растворы замещения, происходит медленнее, чем диффузия углерода, что задерживает скорость роста зародыша в процессе превращения аустенита. Схемы типичных случаев влияния легирующих элементов на кинетику превращения приведены на рис. 86 (для сравнения штриховой линией показана ветвь С-кривых, для нелегированной стали). Элементы Мп, Ni, Si, не образующие специальных карбидов (за исключением Мп), замедляют аустенитное превращение, не изменяя формы С-кривыХ  [c.118]


При анализе полученных результатов с точки зрения влияния легирующих элементов на коррозионную стойкость сталей в азотной кислоте бы—  [c.27]

Как указывалось выше, в сталях феррито-перлитного класса основными факторами, ответственными за прочность, являются свойства ферритной матрицы, прочность которой определяется размером исходного аустенитного зерна, прочностью чистого железа, влиянием легирующих элементов и углерода, растворенных в феррите, и размером ферритного зерна. Вторым фактором, влияющим на предел прочности стали с ферритной матрицей, является упрочняющая карбидная фаза.  [c.212]

Проведенный анализ позволил предположить, что влияние легирующих элементов на механические свойства этих сталей можно охарактеризовать условным коэффициентом влияния  [c.67]

Влияние легирующих элементов на склонность к МКК коррозионно-стойких сталей  [c.51]

На сопротивление высокопрочных сталей КР оказывают существенное влияние термическая обработка, в особенности температура отпуска, способ выплавки, пластическая деформация, химический состав. Влияние легирующих элементов на склонность к КР для высокопрочных сталей в основном близко по характеру к рассмотренному выше для аустенитных сталей, хотя и имеет ряд особенностей, отмеченных в работе [11.  [c.73]

Применение стойких к КР материалов. Установлено, что пол ная невосприимчивость аустенитных коррозионно-стойких сталей к КР в растворах хлоридов достигается при содержании 40—50 % никеля в сплаве. Ранее уже рассматривалось влияние легирующих компонентов на стойкость против КР в различных средах. Необходимо отметить, что в последнее время большое значение придается получению сплавов повышенной частоты (например, методом вакуумной плавки). Снижение при этом содержания азота (до 0,008 %) и углерода (до 0,01 %) в хромоникелевых сталях повышает их стойкость против КР.  [c.76]

В ряде случаев устойчивость конструкций против КР можно увеличить, применяя вместо аустенитных ферритные коррозионно-стойкие стали. Это возможно в условиях, где не проявляются отрицательные свойства этих сталей (склонность к охрупчиванию, пониженная общая коррозионная стойкость). При подборе сталей необходим как строго дифференцированный подход к составу с точки зрения влияния легирующих элементов, так и к их взаимному влиянию друг на друга в комплексе в отношении к КР.  [c.76]

Влияние легирующих элементов на коррозионную стойкость сплавов. Легирующие элементы, изменяя структуру сплава, оказывают влияние на повышение его механических свойств и коррозионной стойкости. Хром вводят как основной элемент, способствующий пассивации стали, марганец  [c.61]

Влияние легирующих элементов на склонность стали к ползучести исследовали с применением методов математического планирования экспериментов.  [c.112]

Рис. 105. Влияние легирующих алемеитов иа свойства стали Рис. 105. <a href="/info/45884">Влияние легирующих</a> алемеитов иа свойства стали
Рис. 285. Влияние легирующих элементов на температуру мартенситного превра-шония (а) и количество остаточного аустенита (6). Стали содержат 1% С Рис. 285. <a href="/info/58162">Влияние легирующих элементов</a> на температуру мартенситного превра-шония (а) и количество остаточного аустенита (6). Стали содержат 1% С
Коррозионная стойкость хромониксльмолибденомсдистых сталей в некоторых агрессивных средах, в особенности в растворах серной кислоты средних концентраций при повышенной температуре, вплоть до 80" С, довольно высока. Влияние легирующих элементов иа коррозионную стойкость этих сталей в серной кислоте сказывается различно, в зависимости от концентрации и температуры среды. Хром повышает коррозионную стойкость в 5—30%-ной серной кислоте при температуре 80 С. Никель и медь повышают коррозионную стойкост1з в 5—60%-но( 1 серной кислоте и особенно в 40—60%-ной при 80° С и в 5— 50%-ной лри температуре до 80° С. Молибден увеличивает стойкость стали в 5—70 /()-пой кислоте при 80° С и в 5—507о-ной при температуре кипения.  [c.230]


Рис 11.15 Влияние легирующих элементов на температуру эвтек-тоидиого превращения (а) и содержание С в эвтектоидной стали (б)  [c.167]

Рис. 13.24. Влияние легирующих элементов на Т в различных плавках стали 42Х2ГСНМА в условиях СТЦ Рис. 13.24. <a href="/info/58162">Влияние легирующих элементов</a> на Т в различных <a href="/info/299310">плавках стали</a> 42Х2ГСНМА в условиях СТЦ
Влияние легирующих элементов на жаропрочность. Высокая жаропрочность стали достигается путем легирования ее хромом, никелем, молибденом, вольфрамом, ниобием, ванадием, кобальтом, титаном, азюминием. По мере увеличения в сплаве числа легирующих элементов и повышения их  [c.101]

Для изготовления деталей применяют сталь марки 40ХГТР. Расшифруйте состав стали и определите группу стали по назначению. Назначьте режим термической обработки. Приведите механические свойства стали после термической обработки. Объясните влияние легирующих элементов на превращения и свойства стали.  [c.155]

Исследование влияния легирующих добавок на свойства цинкового покрытая, полученного из расплава, показало, что d и Sn не влияют, а Си увеличивает толщину покрытия, при этом в присутствии Си и d увеличивается устойчивость цинкового покрытия в атмосферных условиях. Алюминий, введенный в расплав до 0,25 %, вызьтает резкое снижение толщины покрытия и коррозионной стойкости, но увеличивает пластичность биметалла. При одновременном содержании меди и алюминия в цинковом покрытии медь при содержании более 0,02 % подавляет действие алюминия, и стойкость оцинкованной стали в атмосферных условиях повышается. Однако в присутствии алюминия в атмосфере с высокой влажностью возникают темные пятна, ухудшая внешний вид изделия. Добавка олова, кадмия, сурьмы, меди, введенных в расплав вместе с алюминием и свинцом, предотвращает возникновение тем-  [c.54]

Описана теория легирования стали. Показано влияние легирующих элементов на структуру и свойства стали. Приведены технологические особенности обработки легированных сталей. Рассмотрены принципы легирования и термической обработки легированных сталей различного назначения конструкционных, коррозионностойких, теплостойких, жаропрочных, окалиностонких и инструментальных.  [c.26]

Учитывая результаты этих исследований, можно сформулировать основные рекомендации, пользуясь которыми, следует подходить к выбору углеродистых сталей для изготовления деталей, работающих при ударе по закрепленному и незакрепленному абразивам. Для изготовления деталей оборудования и инструмента, подвергающихся при эксплуатации ударам большой энергии об абразивную поверхность, следует рекомендовать эвтектоидные стали. Для изготовления деталей машин и инструмента, работающих в режиме ударно-абразивного изнашивания при небольших энергиях удара, можно рекомендовать среднеуглеродистые стали. Применение в этом случае инструментальной и, прежде всего, заэвтек-тоидной стали нецелесообразно, так как инструментальная сталь в этом случае не имеет существенных преимуществ перед конструкционной. При выборе оптимального содержания углерода в легированных сталях необходимо учитывать влияние легирующих элементов на концентрацию углерода в эвтектоиде.  [c.167]

В настоящее время накоплен достаточный материал о количественном и качественном влиянии легирующих добавок на свойства малоуглеродистых низколегированных сталей ферритно-перлитного класса. Интервалы содержаний легирующих элементов в данных сталях составляют лищь некоторую часть от их предела растворимости в а-железе.  [c.66]

Были проведены также эксперименты [11] по введению в локальные участки поверхности быстрорежущей стали Р18 легирующих элементов (углерода, смеси компонентов твердых сплавов ВКЗ, ВКб, Т15К6) с помощью квазистационарного излучения рубинового лазера. На основании рентгеноструктурного анализа установлено, что изменение параметров решетки матричного материала происходит в результате влияния легирующих элементов, а также растворения в нем карбидов. При легировании углеродом содержание его в исходном материале увеличилось до 3,3%, а при введении порошкообразной смеси компонентов твердого сплава ВКЗ содержание вольфрама возросло в 1,7 раза.  [c.26]

Влияние легирующих элементов на растворимость водорода в сталях одного какого-либо класса проявляется слабо (см. рис. 3). В сталях аустенитного класса и сплавах растворяется водорода примерно в четыре раза брльще, чем в углеродистой стали марки 20, и пример-но в щесть раз больще, чем в сталях мартейситно-фер— ритЯого класса.  [c.119]

Исследование влияния легирующих элементов позволило установить связь между типом и составом карбидных фаз, находящихся в стали, и ее водородостойкостью, а также определить, какое количество того или иного легирующего элемента делает сталь при данных условиях водородостойкой. Можно отметить, что элементы, расположенные в IV периоде периодической системы правее железа, практически не оказывают влияния на водородостойкость стали. Элементы, расположенные левее железа, резко повышают стойкость стали против водородной коррозии. Качественно эта зависимость совпадает с порядком, в котором изменяется сродство металлов к углероду, оцениваемое по свободной энергии образования соответствующего карбида (табл. б). Известно, что связь в карбидах осуществляет-  [c.159]


На основании изучения влияния легирующих элементов на водородоустойчивость стали предложено оценивать склонность стали к водородной коррозии по ее фазовому составу. Это облегчает разработку новых сталей с заранее заданными параметрами водородоустойчивости и позволяет определять водородоустойчивость уже существую-  [c.161]

Предлагаемые некоторые новые положения выдвигаются с учетом результатов авторадиографических и электронномикроскопических исследований структуры металла в течение индукционного периода, основных кинетических закономерностей обезуглероживания стали, выяснения влияния различных факторов на процесс обезуглероживания стали, равно как и результатов электронномикроско-пичёских и металлографических исследований структуры обезуглероженной стали и влияния легирующих элементов на водородостойкость сталей.  [c.162]

Из рпс. 2 также следует, что скорости роста кристаллов впд-манштеттового феррита как на поверхности, так и в объеме образцов в стали 20С2 при всех температурах ниже, чем в углеродистой стали. В марганцовистой п никелевой сталях наблюдается дальнейшее понижение скоростей роста. Влияние. легирующих элементов па скорость роста кристаллов видманштеттового феррита может быть связано с различными факторами, в частности, с влиянием легирования па критические точки в стали и разность свободных энергий фаз, па скорость диффузии углерода, на степень разупрочнения аустенита в процессе роста кристаллов и др.  [c.133]


Смотреть страницы где упоминается термин Стали влияние легирующих : [c.1203]    [c.359]    [c.211]    [c.2]    [c.50]    [c.68]    [c.115]    [c.153]    [c.158]    [c.115]   
Основы металловедения (1988) -- [ c.0 ]



ПОИСК



95 — Режимы стали легированной конструкционной — Температуры — Влияние

Арчаков Ю. И.,Гребешкова И. Д. Влияние легирующих элементов на водородную коррозию стали

Влияние легирующее

Влияние легирующих вращения в стали

Влияние легирующих компонентов на температуру критических точек превращения стали

Влияние легирующих элементов в стали (проф., д-р техн. наук Гуляев)

Влияние легирующих элементов и примесей на дислокационную структуру и свойства стали

Влияние легирующих элементов на критические точки и превращения в стали при нагревании

Влияние легирующих элементов на критические точки стали

Влияние легирующих элементов на превращения в стали

Влияние легирующих элементов на превращения в стали и технологию термической обработки

Влияние легирующих элементов на превращения и свойства стали

Влияние легирующих элементов на различные свойства стали при термической обработке

Влияние легирующих элементов на свариваемость стали

Влияние легирующих элементов на свойства стали

Влияние легирующих элементов на свойства стали и сплавов

Влияние легирующих элементов на строение и свойства стали

Влияние легирующих элементов на структуру и превращения в стали

Влияние легирующих элементов на структуру и свойства стали

Влияние легирующих элементов на структуру, процессы превращения и технологию термической обработки стали

Влияние отдельных легирующих элементов на свариваемость стали

Влияние различных легирующих элементов на структуру стали

Г лава II ФАКТОРЫ, ОКАЗЫВАЮЩИЕ ВЛИЯНИЕ НА ПРОКАЛИВАЕМОСТЬ СТАЛИ Легирующие элементы и примеси

ЗАКАЛЕННАЯ из легированной стали конструкционной улучшаемой — Размеры — Влияние на механические свойства

Заготовки из легированной стали конструкционной — Размеры — Влияние

Испытания стали легированной конструкционной — Температуры Влияние на механические свойств

ЛЕГИРОВАННЫЕ СТАЛИ Влияние легирующих элементов

ЛЕГИРОВАННЫЕ СТАЛИ И СПЛАВЫ Влияние легирующих элементов

Легированные стали и влияние условий эксплуатации на их свойства Влияние легирующих элементов на свойства стали

Легированные стали и чугуны Легированные стали Влияние легирующих элементов

Легированные стали —

Легирующие компоненты — Влияние на свойства стали и чугуна

Мартенсито-ферритные и мартенситные стали 2 Влияние основных легирующих элементов на свойства хромистых нержавеющих сталей

Механические свойства стали, влияние структуры и легирующих элементов

Распределение легирующих элементов и их влияние на свойства стали

Резка плазменная стали кислородная — Влияние легирующих элементов

Свариваемость металла Влияние отдельных легирующих элементов на свариваемость стали

Стали Влияние легирующих элементов

Стали азотируемые влияние легирующих элементов

Стали влияние добавок благородных металлов и легирующих добавок

Стали жаростойкие влияние легирующих элементов

Стали коррозионно-стойкие сероводородостойкие конструкционные - Классификация 251 - Механические свойства после термообработки 252 - Предел выносливости 253 - Влияние примесей и легирующих элементов на свойства 254 - Влияние

Стали мартенситно стареющие деления влияния легирующих элемен

Стали теплоустойчивые влияние легирующих элементов

Стали углеродистые качественные влияние легирующих элементов

Стали цементуемые влияние легирующих элементов

Стали штамповые влияние легирующих элементов

Цементация стали влияние легирующих элементо



© 2025 Mash-xxl.info Реклама на сайте