Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методика исследования развития трещин

Методика исследования развития трещин при высокотемпературном статическом в циклическом нагружении  [c.219]

Методика исследования развития трещин  [c.131]

В книге систематизированы причины, вызывающие остановку развития усталостных трещин, освещены современные методики исследования таких трещин. Подробно проанализировано влияние металлургических, технологических и эксплуатационных факторов на параметры, нераспространяющихся усталостных, трещин. Приведены экспериментальные результаты исследований нераспространяющихся трещин в деталях из разных материалов при различных схемах нагружения.  [c.2]


Развитие методики для описания распространения трещин в произвольных сплошных средах освещено в работах Дж. Р. Райса и Г.П. Черепанова [11, 12] Г.П, Черепановым предложен энергетический подход к исследованию развития трещин.  [c.54]

Вопросы методики выявления усталостных трещин и наблюдения за их развитием, способы выражения результатов исследования и влияние различных параметров нагружения, свойств материала, внешних условий И конструктивных факторов на скорость роста усталостных трещин подробно рассмотрены в работе [18], поэтому в данной книге не излагаются.  [c.33]

Разработана методика исследования закономерностей кинетики развития усталостных трещин и условий перехода к хрупкому разрушению при комбинированном воздействии гармонического и ударно- -го нагружений при низких температурах 143].  [c.263]

В основу методики исследования положен круглый образец с центрально расположенной трещиной и двумя отверстиями, выполненными на расстоянии 0,195 г, где г — радиус образца, от трещины для приложения нагрузки в виде сосредоточенных сил Р [191 (рис. 2, а). Участок образца в направлении развития усталостной трещины с практически не зависящим от длины трещины или изменяемым в заранее известных пределах значением коэс[)фициента интенсивности напряжений используется в процессе исследования для однократного (рис. 2, б) или многократного ступенчатого (рис. 2, в) изменения условий нагружения и испытания. Благодаря возможности получения для каждого режима испытания достаточного количества идентичных по своему значению экспериментальных точек для статистической обработки результатов повышается точность и надежность проводимых исследований. Кроме того, вследствие симметрии нагружения круглого образца обеспечивается устойчивое развитие трещины и не требуется нанесения направляющих канавок, как в двухконсольной балке.  [c.289]

Выполненные в последнее время работы [9, 10, 11] свидетельствуют о существовании (взаимодействия между напряжениями различной величины (при случайном их чередовании), а также о существовании нижней границы повреждающих напряжений спектра, распространяющихся ниже исходного предела усталости. Авторы указанных выше работ экспериментально подтвердили справедливость предположения о том, что недогруз ки.в период развития трещины становятся активными и участвуют в накоплении повреждения. Следует ожидать, что дальнейшие исследования в этом направлении внесут коррективы в методику расчетов на усталость при нестационарных режимах нагружения в зависимости от способа ведения расчета (по критерию трещинообразования или по критерию разрушения). Вместе с тем работ, посвященных изучению кинетики усталостного разрушения, сравнительно немного, что, по-видимому, объясняется отсутствием надежной и доступной аппаратуры для наблюдения за ростом трещин усталости.  [c.183]


Несмотря на значительные успехи в области разработки теоретических положений и их экспериментальном обосновании, а также разработки критериев разрушения в основном применительно для условий нагружения, когда не проявляются температурно-временные эффекты, закономерности образования и развития трещин при циклическом и длительном статическом нагружении остаются в настоящее время малоизученными по причине отсутствия соответствующих экспериментальных данных. Получение такого рода данных требует разработки методик исследования и аппаратуры для высокотемпературных программных испытаний.  [c.4]

Особенности развития трещин на ранних стадиях. С использованием описанных выше экспериментальных методик для исследованных сталей были построены зависимости dl/dn К) для ранних стадий развития магистральных треш,ин.  [c.56]

По имевшим место к моменту исследования случаям обнаружения трещин на верхних поясах шпангоута № 18 хвостовых балок вертолетов Ми-6 была выполнена вероятностная оценка величины наработки, до которой появление подобных трещин на других вертолетах маловероятно [17]. Начиная с этой наработки, необходимо было вводить контроль стыка по шпангоуту № 18 в процессе ремонта для выявления в нем трещин. Оценка нижней границы разброса наработок при достижении предельного состояния стыка по шпангоуту № 18 проведена по методике, в которой использованы представления о линейном накоплении усталостных повреждений, логарифмически нормальном законе распределения усталостной долговечности [18], а кинетика развития усталостных трещин рассмотрена как линейная зависимость прироста усталостных трещин за полет по ее длине [19]. В результате было получено, что до наработки 10000 ч вероятность появления указанных трещин не превышает 5 %.  [c.729]

В настоящей главе в развитие и дополнение известных [9, 29, 331 методов оценки склонности конструкционных материалов к хрупкому разрушению при ударном нагружении изложены новые результаты таких исследований [94, 97,102 —104], а также дается описание установки для регистрации параметров ударного разрушения. При этом описывается методика оценки склонности материала к хладноломкости путем испытания на ударное растяжение цилиндрического образца с кольцевой трещиной, а также показывается применение подобных образцов для ударных испытаний конструкционных материалов.  [c.164]

Доклады были посвящены новым методам теоретического и экспериментального исследования процесса развития и остановки трещин, анализу эффектов, связанных с ускорением и замедлением трещин, новым методам измерения скорости трещины, новым методикам расчета и оценки коэффициента интенсивности напряжений в процессе распространения трещины перед ее остановкой и после нее, а также анализу данных по трещиностойкости по отношению к распространению и остановке трещин для конкретных конструкционных материалов, используемых в ядерной энергетике и других отраслях промышленности, и установлению связи трещино-стойкости со-структурой материала, г.  [c.6]

Проведенные к настоящему моменту исследования позволили также определить круг основных физико-химических и химических параметров, влияющих на зарождение и развитие стресс-коррозионных трещин величина pH, окислительно-восстанови-тельный потенциал (ОВП), электропроводность, содержание органического углерода, закисного железа, сульфатов, сульфидов, карбонатов и бикарбонатов. Однако определение всех этих параметров в полевых условиях возможно из-за трудоемкости анализов и необходимости использования дорогостоящего и громоздкого оборудования. Поэтому для экспресс-оценки потенциально опасных в стресс-коррозионном отношении участков газопроводов в полевых условиях нами были разработаны 4 методики определения ОВП, pH и электропроводности, наличия закисного железа, растворимых сульфидов и сероводорода.  [c.78]

Кузьмин В. С. Развитие методики исследования распространения трещин методом динамической фотоупругости.— Автореф. дис.. .. канд. техн. наук. — М. 1978.-18 с.  [c.330]


Для определения ресурса работы элементов конструкций, подвергаемых воздействию циклических нагрузок, с учетом трещпно-стойкости материала необходимы достоверные данные о закономерностях развития усталостных трещин при эксплуатационных условиях их работы [1]. В настоящее время эти данные можно получить только экспериментально в результате испытания образцов на циклическую трещиностойкость при аналогичных условиях исследования [2]. Достоверность и воспроизводимость результатов таких испытаний обусловлена принятой методикой исследования и зависит от способа их аналитической обработки. Применение принципов линейно-упругой механики разрушения для описания явления распространения усталостной трещины [3] обеспечило теоретическую основу для интерпретации результатов исследований, облегчило их использование в расчетной практике и способствовало дальнейщему интенсивному развитию таких исследований.  [c.284]

Таким образом, методики исследования ЦТКМ в жидких средах в отличие от исследований па воздухе или вакууме должны обеспечивать стабилизацию напряженно-деформированного состояния в вершине трещины по мере ее развития и постоянство электрохими-  [c.288]

В работе [90] по данным исследования сварных стыков стали Х18Н12Т, вырезанных из стационарного паропровода, установлены закономерности развития трещины в зависимости от угла разделки кромок под сварку и длительности испытания. Испытания вырезанных из этих стыков образцов по методике ЦКТИ показало удовлетворительное совпадение опыта эксплуатации с результатами лабораторного исследования. Стыки, показавшие высокую. склонность к трещинообразоваиию в эксплуатации, имели  [c.151]

Для решения [юставленных задач был разработан комплекс методик исследования закономерностей развития усталостных трещив в конструкционных сплавах в широком диапазоне низких и высоких температур (77—773 К), значений коэффициентов асимметрии цикла (—оо < 1), частоты приложения циклической нагрузки (0,15—50 Гц), толщины исследуемых образцов (10—150 мм) при круговом консольном изгибе цилиндрических образцов, консольном изгибе и внеиентренном растяжении плоских образцов. Типы образцов для исследования закономерностей развития усталостных трещин и характеристик вязкости разрушения при статическом, циклическом и динамическом нагружениях показаны на рис. 78, схемы  [c.131]

Методика исследования закономерностей развития усталостных трещин и условий их перехода к хрупкому разрушению при консольном циклическом изгибе плоских образцов в диапазоне низких и высоких температур (773—77 К), изменении коэффициента асимметрии цикла от —оо до 1 и частотах нагружения 30 и 0,3 Ги разработана на базе установки УМП02-04 [207]. Типы и размеры исследуемых образцов показаны на рис. 78, в, г. Размеры образцов толщиной Ь = = 12 мм L = 120 мм Н — 24 мм h = 8 мм размеры образцов толщиной Ь = 20 мм L = 180 мм Я = 40 мм ft = 16 мм.  [c.135]

ОСНОВНЫХ уравнений и граничных условий) для решения задач динамического развития трещин в линейных, а также нелинейных телах. Подробности численного моделирования динамически развивающейся трещины с использованием стационарной, а также подвижной сеток рассмотрены в 4. Здесь же приведены детали конечно-элементной методики на основе подвижной сетки, в которой применяется сингулярный конечный элемент с заложенными в него собственными функциями, связанными с развивающейся трещиной. В 5 подвергнута критическому исследованию практика применения при численном исследовании динамики разрушения интегралов, не зависящих от пути интегрирования. Показано, что применение подобных интегралов в совокупности с обычными (несингулярными) изопараметриче-скими элементами, расположенными вблизи движущейся вершины трещины, приводит к результатам приемлемой точности. В том же 5 проведена оценка приемов, позволяющих разделить различные типы раскрытия трещины (типы I, И и III) в процессе динамического роста. Подробности численного моделирования динамического разрушения лабораторных образцов приведена в 6.  [c.269]

Изготовление образцов должно быть стандартизовано. Следует контролировать содержание кислорода, температуру среды и скорость ее движения. Успешно применяются статистические методы,, но при условии глубокого понимания предмета исследования. Например, при исследованиях питтинга, если вероятность возникновения поражений низка, то с помощью малых образцов нельзя надежно установить наличие поражений. Если металл должен применяться в виде больших листов, то одно-единственное точечное поражение может стать причиной сквозной перфорации, тогда как предложенная выше методика испытаний указала бы на стойкость металла. При испытаниях на коррозионное растрескивание U-образных образцов часто получают результаты, отличающиеся от соответствующих результатов испытаний образцов, подвергавшихся однор( ному растяжению, так как в последних создавались возрастающие напряжения. Различия во времени до разрушения могут дата совершено искаженную информацию о склонности к коррозионному растрескиванию, если, например, толщина окисной пленки неодинакова на всех образцах, поскольку для разрушения окисной пленки может потребоваться значительно более длительное время, чем для развития трещины. Небольшие отличия pH в средах для испытаний могут вызвать ошибочные результаты, так как окисная пленка может удаляться с самыми различными скоростями при изменениях pH в узких пределах.  [c.206]

Ниже рассмотрены методики и результаты исследования кинетики развития усталостных трещин и критических значений коэффициентов интенсивности напряжений для ряда металлов в связи с влиянием температуры, скорости деформирования и цикличности нагружения и рассмотрена модель перехода от стабильного к нестабильному развитию трещины, учитывающая неупругий характер деформирования металла в вершине трещины и дающая возможность объяснить различие критических значений коэффициентов интенсивности напряжений при статическом динамическом KiD и циклическом Kj/ нагружениях.  [c.304]


Отсутствие совершенных средств контроля зарождения и развития повреждений металла, общепринятых принципов назначения новых сроков службы оборудования и трубопроводов с учетом их фактического состояния и условий работы не позволяют осуществлять высокоточное прогнозирование момента отказа конструкции. Оценку показателей надежности и определение остаточного ресурса оборудования и трубопроводов по зафиксированным параметрам их технического состояния проводят согласно научно-технической документации [57, 62-65] и методикам [30, 64, 66-81, 89 91]. Оценку фактической нагруженности оборудования и трубопроводов выполняют расчетными методами с учетом фактической геометрии и размеров конструкций, вида и величины выявленных дефектов и вызываемой ими концентрации напряжений, а также результатов экспериментальных исследований напряженно-деформированного состояния металла и изменения его физико-механических свойств. За исключением трещин механического или коррозионного происхождения развитие остальных повреждений трубопроводов прогнозируют по результатам внутритруб-ной или наружной дефектоскопии и контроля коррозии.  [c.139]

В результате интенсивного развития исследований кинетики усталостной трещины в конструкционных материалах на протяжении последних двадцати лет было предложено много различных методик испытания ЦТКМ. Этому в значительной мере способствовало применение линейно-упругой механики разрушения для описания развития усталостной трещины и установление Пэрисом и др. [6] зависимости скорости роста усталостной трещины v от коэффициента интенсивности напряжений в вершине усталостной трещины К в виде  [c.285]

Результаты исследований [18] показывают, что величина электродного потенциала и pH среды в вершине развивающейся трещины значительно отличаются от аналогичных значений на поверхности образца и в общем объеме испытательной камеры и зависит от системы материал — среда и времени испытания. Поэтому поддержание постоянства электрохимических параметров среды в общем объеме испытательной камеры в процессе исследования ЦТКМ не означает обеспечения идентичности электрохимических условий в верптине трещины по мере ее развития. Следствием этого является неоднозначность получаемых результатов в зависимости от применяемой методики и длительности исследований, что снижает степень надежности и увеличивает степень риска при использовании их для оценки работоспособности элементов конструкций, работающих в условиях воздействия жидких коррозионных сред. В связи с этим методики, не обеспечивающие контроля электрохимических условий в вершине развивающейся трещины, некорректны для исследований ЦТКМ в жидких средах, для которых также необходима стабилизация напряженно-деформированного состояния в вершине трещины по мере ее развития для установления временных зависимостей изменения параметров, характеризующих электрохимические процессы в вершине усталостной трещины.  [c.288]

Для всех рассмотренных методов характерно отсутствие автоматизации записи процесса усталостного разрушения и фиксации момента появления первой трещины, а также некоторая сложность обработки результатов исследования. В связи с этим в Институте механики АН УССР разработаны новые методики и приборы, позволяющие автоматизировать процесс исследования зарождения и развития усталостных трещин, упростить и ускорить обработку получаемых результатов, а также повысить их точность.  [c.184]

При развитых пластических деформациях, когда размеры пластической зоны превышают размеры трещин, расчет по уравнениям линейной механики разрушения приводит к завышенным значениям критических напряжений для конструкций, в которых, согласно требованиям дефектоскопического контроля, трещины имеют ограниченные размеры. Это указывает на необходимость исследования характеристик трещиностойкости в широком диапазоне длин трещин и размеров образцов. Разработанная методика испытаний цилиндрических образцов позволила рассмотреть данный вопрос применительно ксиловым (oQ, 0(.,Кд, К ), деформационным (е ., К ) и энергетическим (ф) характеристикам разрушения.  [c.205]

Существенное влияние на закономерности сопротивления стабильному развитию усталостных трещин, в конечном счете определяющих длительность периода их роста до критического размера, оказывают конструкционные (размеры, концентраторы напряжений), экс11луата-ционные (температура, частота нагружения, среда, режимы циклического нагружения) и технологические (термообработка, сварка и др.) факторы. Однако, несмотря на большое количество известных в литературе подходов для прогнозирования скорости роста усталостных трещин в зависимости от режимов циклического нагружения и характеристик механических свойств исследуемых материалов, ни одно предложенное уравнение не позволяет с достаточной точностью производить расчетную оценку влияния указанных факторов на сопротивление развитию усталостных трещин. Поэтому в настоящее время для получения характеристик трещиностойкости материалов и конструктивных элементов при конкретных условиях их изготовления и эксплуатации необходимы экспериментальные исследования. Это требует разработки методик, позволяющих имитировать воздействие конструкционных, эксплуатационных и технологических факторов на материалы при испытаниях их в лабораторных условиях.  [c.131]

Идея испытания на расслоение у кромки зародилась у Пэйгано и Пайпса [38], которые предложили для определения межслойной прочности применять многонаправленный слоистый композит, нагружаемый растяжением. Последовательность укладки слоев выбиралась так, чтобы основной причиной расслоения у свободной кромки было межслойное растяжение. В работе [37] 3ja методика была распространена на исследование начала и развития расслоения в графито-эпоксидных слоистых композитах ( 302/90°/90°, подвергнутых одноосному растяжению. Для расчета скорости высвобождения энергии деформирования было использовано уравнение (73). В обеих работах образцы не имели инициирующих трещин. Поэтому рост трещин от кромок не был ни однородным, ни симметричным. Кромочная трещина не оставалась в срединной плоскости, а переходила с нее на поверхность раздела 90°/-30° и обратно, что приводило скорее к смешанному типу раэрушения, чем к чистому расслоению типа I. В работе [37] для разделения вкладов механизмов типов I и II был применен метод конечных элементов.  [c.241]

Кинетика развития усталостных трещин. Результаты исследования кинетики развития усталостных трещин в цилиндрических образцах при круговом изгибе из сталей 10ГН2МФА, 45 и армко-железа, свойства которых приведены в табл. 38, проанализированы в работе [91]. Исследования проводились в области прямолинейного участка зависимости daldN — й макс соответствующей уравнению (1.88). Трещины инициировались путем нанесения концентратора в виде сверления диаметром 0,4 мм и глубиной 0,3 мм. Размеры трещины измерялись с помощью микроскопа со стробоскопическим освещением по методике, рассмотренной выше. Связь между глубиной трещины а и ее длиной на поверхности I устанавливали на основе специально поставленных экспериментов [132].  [c.316]


Смотреть страницы где упоминается термин Методика исследования развития трещин : [c.199]    [c.297]    [c.60]    [c.350]    [c.151]    [c.14]    [c.237]   
Смотреть главы в:

Трещиностойкость металлов при циклическом нагружении  -> Методика исследования развития трещин



ПОИСК



Методика исследования

Методика исследования развития трещин при высокотемпературном статическом и циклическом нагружении

Трещина развитие



© 2025 Mash-xxl.info Реклама на сайте