Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процесс преобразования энергии динамический

Процессы преобразования энергии в двигателях разделяются на статические и динамические. Статическим называется такой режим работы двигателя, при котором входные параметры, обобщенная движущая сила и обобщенная скорость выходного звена остаются постоянными в течение некоторого, сравнительно большого интервала времени. Характеристика двигателя (1.1), соответствующая такому режиму работы, называется статической или рабочей-, она выражает зависимость между обобщенной скоростью и обобщенной силой при фиксированном значении вектора и  [c.17]


Воспользуемся теперь введенным выше принципом суперпозиции триплетов для построения более сложных систем, моделирующих каскадный процесс преобразования энергии в турбулентном потоке и проясняющих роль нелинейных взаимодействий различных масштабов в этом процессе. Естественно, что при таком подходе хорошо известны только свойства триплетов, составляющих всю систему, а характер решений получаемых динамических систем может быть довольно сложным и охватывать лишь некоторые черты рассматриваемого явления. Вообще говоря, разложение уравнений гидродинамики по любому полному набору ортогональных опорных векторных функций приводит к СГТ, которые можно представить в виде суперпозиции триплетов. Однако характер их зацепления может оказаться слишком сложным для анализа. Поэтому построение путем указанной суперпозиции систем, обла-  [c.182]

Сопряжение генератора и приводного двигателя СЧ осуществляется таким образом, что дифференциальное уравнение этого каскада преобразования энергии без учета свойств первичного источника энергии и замыкающего звена цепи можно рассматривать как линейное. Это справедливо в пределах основного рабочего диапазона изменения координат и Qi( ) названных электрических машин. Поэтому в (7-9) оператор B iip) и коэффициент Ад1 характеризуют свойства не только ПД силовой части, но и электрического генератора как сети ограниченной мощности. Заметим, что все параметры рассматриваемого промежуточного каскада цепи преобразователей энергии характеризуют процессы, происходящие в системе генератор — приводной двигатель, без учета свойств двигателя внутреннего сгорания и силовой части СП. Так же, как и для силовой части СП, (7-9) отвечает неизменяемой части каскада, т. е. не учитывает изменения его динамических характеристик при добавлении обратных связей по напряжению и току генератора для коррекции режима его работы.  [c.403]

При неподвижном положении искателя, характеризующегося определенной толщиной слоя с ж, все эти сложные интерференционные процессы находятся в динамическом равновесии и определяют параметры электроакустического тракта дефектоскопа, частотную характеристику и коэффициент преобразования электрической энергии в механическую. Малейшее нарушение этого равновесия из-за изменения толщины контактного слоя приводит к изменениям параметров тракта и, следовательно, к изменению чувствительности дефектоскопа. Поэтому относительная стабильность чувствительности прямых искателей при сканировании по грубой поверхности весьма мала.  [c.45]


Динамическое поведение технических объектов отличается разнообразными особенностями. Ниже мы перечислим наиболее важные их свойства. Во всех технических объектах происходят процессы преобразования и/или переноса материалов, энергии и/или информации. Объекты можно классифицировать, руководствуясь следующими показателями  [c.59]

Как показано выше, инерционность измерительной системы СИ и измеряемого процесса из-за конечного времени переходного процесса превращения (преобразования) различных видов энергии (механической, топливной, электрической и др.) приводит к динамическим погрешностям измерений. Динамические погрешности наиболее суш,ественны и опасны (в смысле искажения измерительной информации) при измерении быстропеременных процессов. Например, скорость изменения давления в цилиндрах двигателя внутреннего сгорания достигает 100 ООО кгс/см с ( 10" Па/с), а в топливоподающих трубопроводах дизелей — 500 ООО кгс/см с ( 5/10" Па/с). Поэтому важное значение имеет выбор соответствующей аппаратуры для регистрации этих изменений.  [c.204]

Изучение турбулентности в естественных условиях — атмосфере и океане, а в последнее десятилетие также и в плазме, привело к необходимости рассмотрения динамических процессов в многоярусных системах. Соответ-ствуюшде , модели каскадных процессов преобразования энергии описаны в главе 4. Приводятся результаты, полученные в последние годы по аппроксимации реальных уравнений гидродинамики специальными системами гидродинамического типа, имеющими структуру нелинейных цепочек.  [c.6]

В разделе Динамика машин и механизмов изучается движение функциональных частей машины с учетом действуюпщх сил и инертности механической системы. Силы оценивают механическое воздействие между элементами звеньев при их движении, связанным с выполнением рабочего процесса и преобразованием энергии. Характеристиками инертности являются масса, моменты инерции и центры масс звеньев. Решение задач динамики на стадии проектирования машины, обеспечения динамических характеристик в заданных границах при изготовлении и эксплуатации машин основано на определенных расчетных процедурах. Расчетные динамические модели могут отражать связи между функциональными частями машины с разной степенью идеализации. Обоснованный выбор динамической модели и ее параметров предполагает использование моделей разной сложности в зависимости от заданных требований к динамическим характеристикам машины и ее функциональных частей. Например, наиболее простые динамические модели используются при допущениях отсутствия податливости звеньев (жесткие звенья), линейности передаточных кинематических функций механизмов, отсутствия динамических эффектов в системе управления движением машины при работе на разных режи-  [c.102]

Принцип действия аьезоэлектрических датчиков основан на преобразовании механической энергии в электрическую вследствие возникновения электрических зарядов на поверхности некоторых кристаллов, например, титаната бария, при механическом воздействии на них. Пьезометрические датчики (рис. 4.11) безынерционны, поэтому их наиболее эффективно использовать при измерении быстро протекающих динамических процессов. Пьезоэлектрический датчик усилий (рис. 4.11, а) состоит из корпуса  [c.100]

Важным требованием црп численном моделпровапнп негладких или ударно-волновых динамических процессов является выполнение дискретных аналогов интегральных законов сохранения массы, импульса, энергии и термодинамического неравенства (второго закона термодинамики) [20, 161, 192], в частности построение разностных схем, аппроксимирующих дивергентные формы дифференциальных уравнений в частных производных [74, 75]. Эти требования входят в понятие консервативности разностных схем и полной консервативности [46, 47, 101, 162], при которой для копечио-разпостпой или дискретной системы также выполняются определенные эквивалентные преобразования, аналогичные дифференциальным преобразованиям системы уравнений в частных производных.  [c.27]


Измерение спектров и анизотропии флуоресценции в стационарном, импульсном и модуляционном режимах позволяет в настоящее время изучать широкий спектр структурных и динамических свойств молекулярных систем локализацию и доступность флуорофоров в макромолекулах, мембранах и других микрогетерогенных системах, их организацию и структуру, проницаемость, коэффициенты распределения и сегрегацию веществ в таких системах, микровязкость, вращательную диффузию и сегментальную подвижность, заторможенное и ограниченное вращение групп, процессы релаксации, димеризации, связывания, ассоциации и денатурации. Изучая релаксацию спектров и анизотропию флуоресценции, можно получить информацию о ближайшем окружении флуорофора (1-2 молекулярных слоя) изучая перенос энергии, тушение и реакции возбужденных молекул, можно зондировать уже больший объем вокруг флуорофора (до 10 нм). Как это сделать практически, можно научиться по книге Дж. Р. Лаковича. Конечно, данная область находится лишь в начале своего развития. Многие возможности пока ещё не реализованы, многие трудности и ограничения пока не до конца осозна11Ы, иногда появляется излишний оптимизм и делаются довольно смелые выводы. Со временем все эти трудности роста при широком применении флуоресцентных методов будут преодолены. Безусловно, можно надеяться, что именно флуоресцентные методы позволят получить более глубокую информацию о структуре и свойствах организованных молекулярных систем - как природных, так и синтетиче ских, - научиться управлять ими и создавать эффективные системы для преобразования солнечной энергии в химическую, записи и обработки информации, молекулярной электроники.  [c.6]

Групповая скорость соответствует скорости распространения вершины импульса. Часть энергии распространяется со скоростью, превышающей групповую, и возможно частичное наложение сигналов, переносимых различными волнами. Поэтому особое значение приобретает рассмотрение нестационарных процессов, обусловленных импульсным возбуждением звукопровода. Соответствующая задача может быть решена применением к уравнениям движения, а также начальным и граничным условиям двойных интегральных преоб -разований - синус-косинусного преобразования Фурье для пространственных координат и преобразования Лапласа по времени. Решения в замкнутом виде получены лишь для простейших случаев, имеющих ограниченное практическое значение. Однако можно предположить, что на значительном расстоянии от места возбуждения для не слишком высоких частот характер возмущения практически не зависит от распределения возмущающей нагрузки по возбуждаемому сечению стержня. Показано, что если изменение возбуждающей функцииДО происходит за время, которое велико по сравнению с наибольшим периодом собственных колебаний тела, эффекты, обусловленные пространственным распределением приложенной силы, затухают на расстояниях, сравнимых с размерами тела, определяющими наименьшую частоту собственных колебаний (динамический принцип Сен-Венана).  [c.122]


Смотреть страницы где упоминается термин Процесс преобразования энергии динамический : [c.209]    [c.294]    [c.126]   
Динамика управляемых машинных агрегатов (1984) -- [ c.17 ]



ПОИСК



Преобразование энергии



© 2025 Mash-xxl.info Реклама на сайте