Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварка электронно-лучевая и лазерная

СВАРКА ЭЛЕКТРОННО ЛУЧЕВАЯ И ЛАЗЕРНАЯ  [c.148]

Для сталей III группы (среднеуглеродистых среднелегированных, содержащих карбидообразующие элементы) при сварке в широком диапазоне режимов характерно мартенситное превращение. Для них важно значение />ю, поскольку гомогенизация аустенита и рост зерна в связи с наличием специальных карбидов в исходной структуре замедлены и их можно регулировать с помощью режима сварки. Поэтому для получения благоприятной структуры при сварке этих сталей эффективно снижение q/v, применение концентрированных источников теплоты (плазменной, электронно-лучевой и лазерной сварки). Так-  [c.528]


Сравните области применения электронно-лучевой и лазерной сварки.  [c.473]

С 1Й8 г. нашли промышленное применение способы дуговой сварки в защитных газах ручная сварка неплавящимся электродом, механизированная и автоматическая сварка неплавящимся и плавящимся электродами. В 1950—1952 гг. был разработан высокопроизводительный процесс сварки низкоуглеродистых и низколегированных сталей в среде углекислого газа. В последние десятилетия появились принципиально новые способы сварки плавлением, получившие названия электронно-лучевой и лазерной сварки.  [c.3]

Остальные виды сварки (электронно-лучевая, трением, лазерная, диффузионная и т.д.) обычно применяют для выполнения стыковых соединений.  [c.12]

Жесткие требования по точности выполнения устанавливаемых режимов предъявляются к манипуляторам и механизмам перемещения сварочного источника теплоты в автоматизированных установках. Допустимы следующие колебания скорости перемещения при сварке под флюсом 5 % при аргонодуговой сварке тонколистовых металлов 2 % в установках для электронно-лучевой и лазерной сварки менее 1 %. Точность установки свариваемых изделий и отклонение положения стыка при сварке не должно превышать 20. .. 25 % поперечного размера площади пятна ввода теплоты в изделие, т.е. при сварке под флюсом это составляете 1. .. 2 мм при микроплазменной - не более 0,25 мм при электронно-лучевой и лазерной (в зависимости от диаметра луча) от 0,1 мм до 10 мкм.  [c.168]

Для сварки композитных материалов применяются лучевые способы (электронно-лучевая и лазерная сварка) и дуговая сварка плавящимся и неплавящимся электродом в среде аргона или гелия. Основные трудности сварки этих материалов связаны с различными теплофизическими свойствами наполнителя и матрицы. При воздействии источника тепла в большинстве случаев в первую очередь плавится металл матрицы, как имеющий более низкую Рис. 15.2. Схема образования температуру плавления. Наполнитель мо-сварного соединения ет расплавиться частично (рис. 15.2).  [c.548]

При электронно-лучевой и лазерной сварке малая протяженность зоны термического влияния позволяет получать сварные соединения с более высокими свойствами, чем при дуговой сварке.  [c.550]

Электронно-лучевая и лазерная сварка  [c.74]

Высококачественные сварные соединения гомогенных никелевых сплавов характеризуются высокими значениями жаропрочности и сопротивляемости термической усталости. Более существенно снижаются при аргонодуговой сварке жаропрочные свойства для сварных соединений гетерогенных сплавов по сравнению с основным металлом. При этом электронно-лучевая и лазерная сварки дают соединения, мало отличающиеся от основного металла.  [c.88]


Интенсивность изменения температур на стадиях нагрева и охлаждения термических циклов при общепринятой технологии сварки снижается с увеличением уровня погонной энергии сварки дЬ. Значения дЬ минимальны при электронно-лучевой и лазерной сварке (0,1—0,6 МДж/м), соответствуют 0,3—1,5 МДж/м при сварке в среде защитных газов неплавящимся электродом, 0,5—3 МДж/м — при ручной электродуговой сварке и сварке в среде защитных газов плавящимся электродом, 1—10 МДж/м — при дуговой сварке под флюсом и 30—125 МДж/м — при электрошлаковой сварке.  [c.16]

К электрической сварке плавлением относятся дуговая, электрошлаковая, плазменная, электронно-лучевая и лазерная.  [c.110]

В последние десятилетия создание учеными новых источников энергий — концентрированных электронного и лазерного лучей — обусловило появление принципиально новых способов сварки плавлением, получивших название электронно-лучевой и лазерной сварки. Эти способы сварки успешно применяют в нашей промышленности.  [c.4]

Термический класс — все виды сварки плавлением, осуществляемые с использованием тепловой энергии (газовая, дуговая, электрошлаковая, плазменная, электронно-лучевая и лазерная).  [c.8]

Наибольшее распространение получили газовый и дуговой способы сварки плавлением. Новыми способами сварки плавлением являются плазменная, электронно-лучевая и лазерная. Из способов сварки давлением широко применяют контактную и холодную сварки.  [c.139]

Б промышленности применяют различные способы сварки газовую — Г, под флюсом — Ф, в защитных газах — 3, электрошлаковую — Ш, ультразвуковую — Уз, плазменную — Пз, электронно-лучевую — Эл, лазерную — Лз и т. д.  [c.194]

Кроме указанных отметим и другие виды сварки электронно-лучевую, ультразвуковую, трением, холодным сдавливанием, лазерную.  [c.137]

Температура диффузионной сварки, конструктивные формы и размеры изделий определяют выбор источника нагрева. Нагрев изделий при диффузионной сварке можно осуществить с помощью любых известных источников нагрева (индукционных, радиационных, плазменных, дуговых, светолучевых и т.д.) По источникам и способам нагрева, применяемым для диффузионной сварки, установки делят на следующие группы с индукционным, радиационным, контактным, электронно-лучевым, световым, лазерным нагревом, с нагревом в поле тлеющего разряда, с нагревом проходящим током, комбинированным и т. д.  [c.98]

Существенно расширились условия проведения сварочных работ. Наряду с обычными условиями сварку выполняют в условиях высоких температур, радиации, под водой, в глубоком вакууме, в условиях невесомости. Быстрыми темпами внедряются новые виды сварки — лазерная, электронно-лучевая, ионная, световая, диффузионная, ультразвуковая, электромагнитная, взрывная и др., существенно расширились возможности дуговой и контактной сварки.  [c.3]

Лазерная сварка как технологический процесс, связанный с локальным плавлением, находит все более широкое применение, конкурируя как с традиционными способами сварки, так и с электронно-лучевой сваркой.  [c.127]

Зная конструктивные размеры зоны сварки и способ сварки, по соответствующим стандартам назначают тип сварного шва. Конструктивные элементы сварных швов приведены в справочниках [34], Типы сварных соединений, указанные в стандартах, могут сохраняться и для других методов сварки, для которых стандарты еще не разработаны, например, лазерная или электронно-лучевая. Но в этом случае конструктивные элементы подготовки кромок, форма и размеры сварных швов и допуски на них корректируются с учетом технологических особенностей этих способов сварки.  [c.156]

К сварке плавлением относятся следующие способы дуговая, электрошлаковая, электронно-лучевая, лазерная, газовая, термитная, а к сварке давлением — контактная, диффузионная, холодная, ультразвуковая, взрывом и др.  [c.51]

Созданы и эффективно внедряются в машиностроительную промышлен ность современные технологические методы обеспечения надежности машин, например новые методы сварки (ультразвуковая, лазерная, взрывом, электронно-лучевая, диффузионная и др.). Разработаны эффективные средства и способы защиты металлов от коррозии, создан ряд новых коррозионно-стойких и конструкционных сталей и сплавов.  [c.6]


В области сварки и пайки повышение качества соединений обеспечивается применением электронно-лучевой (рис. 7), лазерной сварки, сварки сжатой дугой, а также за счет управления процессом кристаллизации, улучшения защиты металла от окисления, равномерного распределения присадочного материала.  [c.75]

Лазерную сварку малых толщин широко применяют в электронной и радиотехнической промышленности для сварки проводов, элементов микросхем, пружин и т.п. деталей, в производстве и при ремонте вакуумных приборов (кинескопов, электронно-лучевых трубок и т.д.), герметизации корпусов различных приборов и устройств и во многих других процессах. В этой отрасли все чаще для сварки применяют полупроводниковые лазеры, а также мощные некогерентные источники  [c.246]

Перечислите основные достоинства и недостатки лазерной сварки по сравнению с электронно-лучевой.  [c.248]

Лазерную сварку производят на воздухе или в среде защитных газов аргона, СО2. Вакуум, как при электронно-лучевой сварке, здесь не нужен, поэтому лазерным лучом можно сваривать крупногабаритные конструкции. Лазерный луч легко управляется и регулируется, с помощью зеркальных оптических систем легко транспортируется и направляется в труднодоступные для других способов места. В отличие от электронного луча и электрической дуги на него не. влияют магнитные поля, что обеспечивает стабильное формирование шва. Из-за высокой концентрации энергии (в пятне диаметром 0,1 мм и менее) в процессе лазерной сварки объем сварочной ванны небольшой, малая ширина зоны термического влияния, высокие скорости нагрева и охлаждения. Это обеспечивает высокую технологическую прочность сварных соединений, небольшие деформации сварных конструкций. Например, лазерная сварка вилки с карданным валом автомобиля по сравнению с дуговой сваркой увеличивает срок службы карданной передачи в три раза, потому что более чем вдвое уменьшается площадь сечения сварного шва, в несколько раз -время сварки. Деформации вилки, вызывающие преждевременный износ, практически отсутствуют.  [c.236]

Сварка термического класса основана на использовании тепловой энергии и включает такие ее виды электродуговую, электрошлаковую, газовую, индукционную, плазменную, термитную, электронно-лучевую, лазерную и др. Сварка механического класса (сварка трением, ультразвуковая и др.) содержит те ее виды, которые используют механическую энергию. Сварка термомеханического класса (контактная, диффузионная, газопрессовая, взрывом и др.) основана на сочетании тепловой энергии и потенциальной энергии давления.  [c.242]

Сварочная ванна перемещается по свариваемому изделию вместе с источником теплоты. После затвердевания расплавленного металла сварочйой ванны образуется шов. Поперечное сечение переплавленного металла условно делят на площадь наплавки F и площадь проплавления основного металла Fo (рис. 12.13). Очертания зоны проплавления основного металла характеризуется коэффициентом формы проплавления i )np = = b/h или относительной глубиной проплавления h/b, а также коэффициентом полноты проплавления ц р= Fo/(bh). Очертание зоны наплавки характеризуется коэффициентом формы валика ) =Ь/с и полноты валика i =FJ b ). Глубина и форма проплавления зависят от сосредоточенности источника теплоты, определяемой способом сварки и силой сварочного тока. Так, заглубление сварочных ванн имеет место при электронно-лучевой и лазерной сварке, а также при дуговой сварке легких металлов с использованием тока большой плотности. На рис. 12.14 показаны формы поперечных сечений швов при различных способах сварки.  [c.446]

Образующаяся при сварке литая структура шва значительно отличается по свойствам от структуры основного металла. Основным дефектом при сварке (особенно ППМ) материалов является пористость. При сварке ПСМ ввиду низкой теплопроводности по толщине возможно образование прожогов и подрезов у линии сплавления. Сварку осуществляют вольфрамовым электродом в среде аргона с присадочной проволокой (для ППМ - Св-04Х19Н9, а ПСМ - металла, аналогичного сетке). Возможна электронно-лучевая и лазерная сварка.  [c.551]

Ок ло 35 лет том назад появились и стали привлекать к себе внимание некоторые новые для того времени процессы сварки. Среди них оказались холодная, сварка трением, ультразвуковая, взрьшом и другие, для которых механическое давление было главой и обязательной технологи еской операцией. Возникла необходимость не только формально выделить эти виды сварки. Они оказались особыми и по технологической сущности, и по времени появления. Последний показатель подсказал название новые способы сварки . Это термин свое существование оправдывал недолго. В производство начали вводиться еще более новые виды сварки плазменная, электронно-лучевая и лазерная. Стало ясно, что в направлении реализации новых процессов сварка способна развиваться бесконечно.  [c.4]

Лучевые источники энергии используют при сварке электрон шм лучом, лазерной сварке и световой сварке. При сварке электронным лучом носителем энергии являются электроны, при лазерной и све-, ТОБОЙ — фотойы.  [c.14]

Для изготовления сварных конструкций из ППМ. используют шовную контактную сварку, электронно-лучевую, лазерную, аргоно-дуговую и диффузионную. Эффективное использование шовной контактной сварки высокопористых ППМ из коррозионностойких сталей Х18Н15 и Х18Н9 снижается из-за высокой склонности этих материалов к образованию в шве сквозных поперечных трещин [3,4]. Причинами трещин являются низкая прочность и малая деформационная способность высокопористых сталей из нержавеющих порошков, высокий коэффициент термического расширения и наличие на поверхности частиц стойких и прочных оксидов с большим содержанием хрома.  [c.508]


Основные виды сварки термического класса — дуговая, газовая, электрошлаковая, электронно-лучевая, ппазменная, лазерная, термитная и др.  [c.4]

В качестве источника теплоты при электрической сварке плавлением можно использовать различные источники — электрическую дугу (электродуговая сварка), теплоту шлаковой ванны (электрошлаковая сварка), теплоту струи ионизированных газов холодной пла. злгы (плазменная сварка), теплоту, выделяемую в изделии в результате преобразования кинетической энергии электронов (электронно-лучевая сварка), теплоту когерентного светового луча лазера (лазерная сварка) и некоторые другие.  [c.4]

В Советском Союзе разработаны и внедрены новые методы сварки, например, диффузионная, открьшающая широкие возможности для автоматизации процессов, сварки деталей из разнородных материалов, упрочнения силовых конструкций, и ряд других (термитная, лазерная, взрывом, трением, плазменная, электронно-лучевая, индукционная, газопрессовая, холодная, ультразвуковая, электрошлаковая, сварка по флюсу, под флюсом и др.).  [c.256]

К термическому классу относятся виды сварки, осуществляемые илавлеиием с использованием тепловой энергии (дуговая, плазменная, электрошлаковая, электронно-лучевая, лазерная, газовая и др.).  [c.182]

Электронно-лучевая сварка приводит к сниаению предела выносливости соединения примерно на 30 (рис. 3, 2) по сравнен с основный материалом. Проведение отжига после сварки позволяет повысить предел выносливости шва до уровня предела выносливости основного материала. Следует отметить, что плоскость р рутензн находится на расстоянии 8-Э мм от центра шва, т.е. вне зоны термического влияния. Разрушение при лазерной [4 J и аргоно-дат(> вой сварке СбЗ сплава Те - 6Ai> V имеет аналогичный характер. Отжиг не Щ)иводит к качественному изменению характера 1йз -рушения, хотя и позволяет повысить предел выносливости.  [c.15]

В результате расплавления металлических деталей по примыкающим поверхностям под действием мощного лазерного излучения и последующей кристаллизации этого расплава образуется сварное соединение, основанное на межатомном взаимодействии. Тйким образом, лазерная сварка, как и дуговая, плазменная и электронно-лучевая, относится к методам сварки плавлением высококонцентриро-ванными источниками энергии.  [c.245]

По сравнению с электронно-лучевой сваркой лазерная сварка не требует специальных вакуумных камер, что позволяет расширить номенклатуру размеров обрабатываемых деталей. С другой стороны, электронное излучение обладает большей "проникающей способностью", что позволяет сваривать изделия значительно большей толщины. Комплексное сравнение этих методов по технологическим и экономическим характеристикам показало, что при мощностях излучения до 4 кВт (сварка различных металлов толщиной до 5 мм) преимущество лазерных методов сварки несомненно. Если же необходима мощность излучения более 10 кВт (сварка металлов толщиной более 10 мм), то экономически выгоднее использовать элек-  [c.247]


Смотреть страницы где упоминается термин Сварка электронно-лучевая и лазерная : [c.124]    [c.375]    [c.222]    [c.505]   
Смотреть главы в:

Технология и оборудование сварки плавлением и термической резки  -> Сварка электронно-лучевая и лазерная



ПОИСК



Лазерное (-ая, -ый)

Оборудование для электронно-лучевой и лазерной сварки

Сварка лазерная

Сварка электронно-лучевая



© 2025 Mash-xxl.info Реклама на сайте