Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Первичная кристаллизация металла сварочной ванны

Порыв сварных швах возникают при первичной кристаллизации металла сварочной ванны в результате выделения газов. Поры представляют собой заполненные газом полости в швах, имеющие округлую, вытянутую или более сложную форму. Поры могут располагаться по оси шва, его сечению или вблизи границы сплавления.  [c.40]

Первичная кристаллизация металла сварочной ванны  [c.25]

Первичная кристаллизация металла сварочной ванны имеет прерывистый характер, вызванный выделением перед фронтом кристаллизации скрытой теплоты кристаллизации. Это приводит к характерному слоистому строению шва и появлению ликвации в виде слоистой неоднородности, которая в наибольшей степени проявляется вблизи границы сплавления. Слоистая ликвация также зависит от характера и скорости кристаллизации металла сварочной ванны. Слоистая и дендритная ликвации уменьшаются при улучшении условий диффузии ликвирующих элементов в твердом металле.  [c.257]


Кристаллизация металла при сварке. Различают первичную и вторичную кристаллизации. Переход металла сварочной ванны из жидкого состояния в твердое называется первичной кристаллизацией. Первичная кристаллизация металла сварочной ванны начинается от частично оплавленных зерен основного или ранее наплавленного металла и продолжается по нормали от линии расплавления (рис. 3.3).  [c.53]

Первичная кристаллизация металла сварочной ванны, так же как кристаллизация слитков и отливок, носит прерывистый характер. Швы, выполненные сваркой плавлением, имеют слоистое строение (рис. 2-42). Толщина кристаллизационного слоя при дуговой сварке обычно составляет десятые доли миллиметра. При электрошлаковой сварке слой имеет большую толщину и выявляется более четко.  [c.87]

Порами называют заполненные газом полости в швах, имеющие округлую, вытянутую или более сложную форму. Они возникают при первичной кристаллизации металла сварочной ванны в результате выделения газов. Поры располагаются по оси шва или по его сечению, а также вблизи от границы сплавления. При дуговой сварке поры выходят или не выходят на поверхность шва (рис. 6-24, а, б), располагаются цепочкой по оси шва (рис. 6-24, а) или отдельными группами (рис. 6-24, в). Поры, выходящие на поверхность шва, иногда называют свищами. При электрошлаковой сварке и дуговой сварке с принудительным формированием поры не выходят на поверхность шва (рис. 6-24, г), что обусловлено более ранним затвердеванием примыкающей к формирующим устройствам части металла сварочной ванны.  [c.255]

Поры в сварных швах возникают при первичной кристаллизации металла сварочной ванны в результате выделения газов. Поры представляют собой заполненные газом полости в швах, имеющие округлую, вытянутую или более сложные формы. Поры могут располагаться по оси шва, его сечению или вблизи границы сплавления. Они могут выходить или не выходить на поверхность, располагаться цепочкой, отдельными группами или одиночно, могут быть микроскопическими и крупными (до 4—6 мм в поперечнике). Причины возникновения пор следующие  [c.30]

Первичная кристаллизация металла сварочной ванны протекает периодически, что обусловлено периодичностью снижения теплообмена и выделения скрытой теплоты кристаллизации. Это приводит к слоистому строению металла шва, к появлению зональной и дендритной ликвации. Толщина закристаллизовавшихся слоев зависит от объема сварочной ванны и скорости охлаждения металла и колеблется в пределах от десятых долей миллиметра до нескольких миллиметров. Зональная (слоистая) ликвация выражается неоднородностью химического состава металла шва в периферийной и центральной зонах. Это является следствием того, что металл периферийных зон затвердевает раньше и поэтому содержит меньше примесей. Металл центральной зоны шва оказывается более обогащенным примесями. Дендритная ликвация характеризуется химической неоднородностью кристаллитов. Первые кристаллиты (центральные и начальные части дендритов) содержат меньше примесей, а междендритное пространство оказывается более загрязненным примесями.  [c.107]


Условия протекания процесса первичной кристаллизации в значительной степени определяют свойства литого металла и, в частности, металла сварного шва. Кристаллизация металла сварочной ванны отличается от кристаллизации слитка, в силу того, что I) сварочная ванна находится одновременно под воздействием нагрева сварочной дугой и охлаждения со стороны твердого металла. Жидкий металл ванны, соприкасаясь с более холодным основным металлом, очень быстро охлаждается 2 жидкий металл сварочной ванны окружен твердым металлом свариваемого изделия, нагретым до различных температур 3) средняя скорость кристаллизации металла шва равна скорости перемещения ванны, т. е. скорости сварки.  [c.163]

Условия протекания процесса первичной кристаллизации в значительной степени определяют свойства литого металла и, в частности, металла сварного шва. Кристаллизация металла сварочной ванны отличается от кристаллизации слитка по следующим причинам сва-  [c.17]

Кристаллизация металла сварочной ванны начинается у границы с не-расплавившимся основным металлом В зоне сплавления. Различают кристаллизацию первичную и вторичную. Первичной кристаллизацией называют процесс перехода металлов и сплавов из расплавленного (жидкого) состояния в твердое. Структура металлов, не имеющих аллотропических превращений, определяется только первичной кристаллизацией. Металлы и сплавы, имеющие аллотропические формы или модификации, после первичной кристаллизации при дальнейшем охлаждении претерпевают вторичную кристаллизацию в твердом состоянии — переход из одной аллотропической формы в другую (фазовые превращения).  [c.42]

При остывании металла сварочной ванны происходит его первичная и затем вторичная кристаллизация. Образование зерен при переходе металла из расплавленного в твердое состояние называется первичной кристаллизацией. При изменении температуры в затвердевшем металле меняется форма зерен. Этот процесс называется вторичной кристаллизацией (перекристаллизацией). При вторичной кристаллизации стремятся к измельчению зерна, что улучшает механические свойства стали. Легирование металла шва через покрытие электродов, а также надежная защита металла сварочной ванны способствуют получению достаточно чистого, без включений, металла шва необходимого химического состава с требуемыми свойствами.  [c.16]

Переход металла сварочной ванны из жидкого состояния в твердое называют первичной кристаллизацией. Процесс первичной кристаллизации заканчивается образованием столбчатых кристаллитов. Структуру металла шва, сформировавшуюся в результате первичной кристаллизации, именуют первичной.  [c.85]

Измельчение первичной структуры металла шва может быть достигнуто за счет увеличения скорости кристаллизации. Для этого уменьшают погонную энергию сварки путем снижения силы сварочного тока, повышения скорости сварки, увеличения числа проходов. Однако при этом снижается производительность сварочных работ. Указанного недостатка лишен способ введения дополнительного металла с присадочной проволокой, приводящей к охлаждению металла сварочной ванны и уменьшению размеров кристаллитов.  [c.237]

Особенности первичной кристаллизации металла при сварке. Кристаллизация металла в сварочной ванне протекает в таких специфических условиях  [c.269]

Как было показано выше, в расплавленном металле сварочной ванны перед разными точками фронта кристаллизации реализуются различные уровни концентрационного переохлаждения. В соответствии с этим пограничные участки первичных кристаллов (дендритов, ячеек) должны в разной степени обогащаться примесными элементами. Соблюдение постоянного положения анализируемого участка на исследуемых шлифах позволило нри прочих равных условиях проследить влияние химического состава металла шва на уровень дендритной ликвации элементов и исключать влияние других факторов.  [c.33]


Наилучшие очаги гетерогенной кристаллизации — частицы или поверхности того же металла, что и расплав, например зерна основного металла, ограничивающие жидкую сварочную ванну. Оплавленные зерна основного металла становятся зародышевыми центрами кристаллизации, на которых, как на своеобразной подкладке, начинают расти первичные кристаллы шва (рис. 12.5). Растут кристаллы нормально к поверхности охлаждения в глубь жидкого металла ванны, в направлении, обратном отводу теплоты.  [c.438]

Вследствие стабильности аустенита вторичной кристаллизации не происходит, т. е. в процессе охлаждения металла после затвердевания сварочной ванны фиксируется структура, образованная в результате первичной кристаллизации.  [c.318]

Трещины горячие образуются в процессе кристаллизации металла вследствие одновременного резкого снижения пластических свойств его в температурном интервале хрупкости и действия растягивающих напряжений. Вероятность образования горячих трещин зависит от химического состава металла шва, скорости нарастания и величины растягивающих напряжений, формы сварочной ванны и шва, размера первичных зерен аустенита и увеличивается с повышением в металле шва углерода, кремния, никеля, вредных примесей (серы и фосфора). Для горячих трещин характерен межкристаллитный вид разрушения.  [c.8]

Успехи в разработке новых марок флюсов объясняются достижениями в области развития теории металлургических процессов автоматической сварки и наплавки, основой для которой послужили новейшие достижения советской науки, в первую очередь физики. Радиоактивные изотопы дали возможность понять физическую сущность сварочных процессов под слоем флюса, внести ясность во многие вопросы взаимодействия жидких металлов и шлаков, изучить главнейшие особенности процессов первичной кристаллизации сварочной ванны, которые определяют качество и долговечность металла шва, а тем самым — и сварного соединения в целом.  [c.124]

Горячие трещины возникают в процессе первичной кристаллизации сварочной ванны по границам зерен. Трещины, выходящие на поверхность сварного швз, бывают заполнены шлаком. Следовательно, горячие трещины образуются при температуре выше 1 200° С, когда шлак еще не затвердел. При кристаллизации и охлаждении сварочной ванны вследствие усадки металла и неравномерного прогрева в металле шва возникают растягивающие напряжения. В зависимости от температуры усадка аустенитной стали и коэффициент ее линейного расширения больше этих характеристик углеродистой или низколегированной стали в 1,5—2 раза. Поэтому напряжения, возникающие при кристаллизации и охлаждении аустенитного сварного шва, также получаются выше.  [c.183]

Наименьшая химическая неоднородность возникает при гладком росте примеси вследствие малой скорости кристаллизации оттесняются фронтом затвердевания, границы между кристаллитами тонкие. Больше примесей остается на границах кристаллитов и на субграницах ячеек при ячеистом росте. Наибольшая химическая неоднородность образуется при дендритном росте. Между автономными кристаллитами также образуются ликвационные прослойки, но здесь они менее опасны. Эти кристаллиты не имеют преимущественного направления роста, прослойки равномерно распределены в затвердевшем металле. Таким образом, наиболее опасны для качества сварного шва дендритные кристаллиты. Поэтому важно, чтобы первичная структура металла шва была мелкозернистой с незначительной химической неоднородностью. Этого можно добиться, вводя в сварочную ванну элементы-модификаторы или твердые частицы, которые послужат центрами для автономных кристаллитов.  [c.28]

Горячие трещины возникают в процессе первичной кристаллизации сварочной ванны. Они проходят по границам зерен. Горячие трещины, выходящие на поверхность сварного аустенитно-го шва, бывают заполнены шлаком. Следовательно, они образуются при температуре выше 1200° С, когда шлак еще жидкий. При кристаллизации и охлаждении сварочной ванны вследствие усадки металла и неравномерного прогрева в металле сварного шва возникают растягивающие напряжения. Усадка аустенитной  [c.252]

Главной особенностью совместной кристаллизации двух фаз в сварочной ванне, будь то первичный феррит, карбидная или иная эвтектика, является двухфазное строение металла шва и, что особенно важно, измельчение и дезориентация его структуры.  [c.110]

Процесс первичной кристаллизации сварочной ванны и образование шва при всех видах электродуговой сварки начинаются с частично оплавленных зерен металла изделия (рис. 140, е). Оплавленные зерна начинают расти в виде дендритов или столбчатых кристаллов, распространяясь в глубь сварочной ванны. Между металлом изделия и металлом шва возникают общие зерна и через шов устанавливается связь между свариваемыми элементами конструкции. I  [c.196]

Горячие трещины образуются в процессе первичной кристаллизации сварочной ванны. Они проходят по границам зерен. Трещины, выходящие на поверхность шва, бывают заполнены шлаком. Это свидетельствует о том, что они образуются при температуре выше 1200° С, когда шлак еще жидкий. При кристаллизации и охлаждении сварочной ванны вследствие усадки металла и неравномерного прогрева в металле сварного шва возникают растягивающие напряжения. Усадка сталей аустенитного класса и коэффициент линейного расширения их больше, чем у углеродистой или низколегированной стали, в 1,5—2 раза в зависимости от температуры. Поэтому напряжения, возникающие при кристаллизации и охлаждении сварного шва таких сталей, тоже высокие.  [c.217]


Кристаллизация сварного шва протекает в характерных условиях, изложенных в 9.1 средняя скорость кристаллизации равна скорости сварки. Процесс первичной кристаллизации начинается после продвижения дуги вдоль шва и прекращения ее действия на данный участок сварочной ванны. Жидкий металл кристаллизуется в направлении, обратном отводу тепла в основной металл, т. е. от стенок ванны к центру (рис. 9.5, а). По границам расплавления образуются общие кристаллиты основного и наплавленного метал-  [c.122]

Кристаллизация сварочной ванны. Кристаллизацией называется процесс образования зерен (кристаллов) металла при переходе его из жидкого состояния в твердое. Различают первичную и вторичную кристаллизацию.  [c.82]

Стойкость металла шва против образования горячих трещин зависит от величины и темпа нарастания растягивающих деформаций в процессе кристаллизации шва, формы сварочной ванны, величины первичных кристаллитов и химического состава металла шва.  [c.554]

Измельчение первичной структуры и изменение характера первичной кристаллизации подавлением столбчатой структуры могут повысить стойкость металла шва против образования горячих трещин. Меры подавления столбчатой структуры уже рассматривались в гл. XIX Образование первичной структуры и формирование металла сварного шва . Следует отметить, что увеличение скорости кристаллизации путем уменьшения объема сварочной ванны не дает существенного эффекта, так как снижает производительность сварки и уменьшает прочность сварного шва при остывании. Наклеп кромок связан с технологическими трудностями и не позволяет получить достаточного глубокого наклепанного слоя. Эффективно введение модификаторов через сварочную проволоку, флюс или покрытие.  [c.555]

Первичная кристаллизация сварочной ванны при всех видах дуговой сварки начинается от частично оплавленных зерен основного металла или столбчатых кристаллитов предыдущего слоя (при многопроходной сварке), являющихся готовыми центрами кристаллизации. Видимая граница между металлами исчезает. Условную поверхность раздела между зернами основного металла и кристаллитами шва именуют границей шва или границей сплавления (рис. 2-39).  [c.86]

Первичная кристаллизация металла сварочной ванны протекает периодически, так как периодически ухудшается теплообмен, периодически выделяется скрытая теплота кристаллизации. Это приводит к слоистому строению металла шва, к появлению ликвации, как зональной, так и дендритной. Толщина закристал-  [c.42]

Кристаллизация металла сварочной ванны у границы с нераспла-вившимся основным металлом (границы сплавления) протекает очень быстро. По мере удаления от нее к центру ванны длительность пребывания металла в расплавленном состоянии увеличивается. Переход металла из жидкого в твердое состояние - первичная кристаллизация на границе  [c.256]

Процессы вторичной кристаллизации в металле шва и в основном металле. В торичная кристаллизация в металле шва. Как установлено ранее, процесс первичной кристаллизации в сварочной ванне сплава /—/ (малоуглеродистая сталь) заканчивается достижением температуры Гс (рис. 151). Металл приобретает аустенитную структуру у-Ре, но аустенитные зерна образуются в пределах первичных столбчатых кристаллов.  [c.285]

При наплавке штучными электродами из проволок ЭИ694 и ЭИ695 на образцы тех же сплавов Укр ниже, чем при наплавке под флюсом. При этом металлографический анализ показал, что в первом случае структура сварного шва более столбчатая и в ней содержится меньшее количество первичных карбидов ниобия. Таким образом, разницу в показателе икр можно объяснить влиянием скорости охлаждения металла сварочной ванны на внутрикристаллическую ликвацию углерода и ниобия. При наплавке штучными электродами размеры сварочной ванны меньше, а скорость охлаждения ее больше, чем при наплавке под флюсом. С увеличением скорости охлаждения эффект подавления диффузионного механизма кристаллизации проявляется в уменьшении количества первичных карбидов ниобия, благодаря чему  [c.149]

Чем, быстрее о.хлаждение расплавленного металла сварочной ванйы, тем больше образуется центров кристаллизации и тем ме.льче будут зерна металла. При медленном охлаждении в процессе кристаллизации металл приобретает крупнозернистое строение. Форма сварного шва имеет существенное значение для направления кристаллизации и расположения посторонних включений.. При широких швах эти включения вытесняются наверх и легко удаляются. При узких сварных швах посторонние включения зачастую остаются внутри шва между зернами. Первичная кристаллизация носит периодический волнообразный характер, т. е. расплавленный металл застывает не сразу по всему объему, а отдельными порциями — слоями (волнами). Это подтверждается наличием кристаллизационных слоев, которые можно проследить на разрезе сварного шва после специальной обработки. Волновой характер кристаллизации является еще одной причиной образования чешуйчатой поверхности сварного шва.  [c.83]

Образование горячих трещин определяется рядом факторов. Большое значение имеет характер первичной кристаллизации. При сварке многих чистых металлов и эфтектических сплавов структура имеет характер крупных столбчатых кристаллов. При такой структуре чаще образуются горячие трещины. Она устраняется введением в сварочную ванну модификаторов, способствующих образованию центров кристаллизации, и ультразвуковых колебаний.  [c.130]

С затвердеванием металла шва структурные превращения в нем не заканчиваются. Например при сварке стали первичные кристаллиты сразу после их образования состоят из аустенита - твердого раствора углерода и легирующих элементов в у-железе, существующего при высоких температурах (750...1500 °С ). В процессе охлаждения аустенит распадается, превращаясь в зависимости от состава стали и скорости охлаждения в другие фазы пластичный феррит, более прочный перлит и прочный, но малопластичный мартенсит. Скорость охлаждения зоны сварки обычно велика, и структурные превращения не успевают произойти до конца. Следовательно, меняя скорость охлаждения сварного соединения, подогревая или искусственно охлаждая его, можно в некоторых пределах управлять вторичной кристаллизацией металла шва и его механическими свойствами. Теплота, выделяемая источником нагрева, при сварке распространяется в основной металл. Его участки нагреваются до температуры плавления на границе сварочной ванны и имеют температуру окружающей среды вдали от нее. Это не может не сказаться на структуре металла. Зону основного металла, в которой в результате нагрева и охлаждения металла происходят изменения структуры и свойств, называют зоной термического влиянця (ЗТВ). Каждая точка в ЗТВ в зависимости от расстояния до оси шва достигает различной максимальной температуры, нагревается и охлаждается с различными скоростями. Изменение температуры данной точки во времени KdiZUbdiKiX термическш циклом. Каждая точка ЗТВ имеет при сварке свой термический цикл. Значит, металл в ЗТВ подвергается в результате сварки нескольким видам термической обработки. Поэтому в ЗТВ наблюдаются четко выраженные участки с различной структурой и свойствами.  [c.29]


Характер микроструктуры сварных швов аустенитных сталей в значительной степени определяется процессом первичной кристаллизации сварочной ванны. В отличие от жидкой стали, затвердевающей в изложнице, в сварочной ванне всегда существует готовая поверхность раздела между жидкой и твердой фазами — частично оплавленные дугой зерна основного металла или столбчатые кристаллы нижележащего сварного шва. Они служат подкладкой, с которой начинается рост кристаллов в сварочной ванне (рис. 24). Вследствие этого существует непосредственная связь между величиной зерна аустенитной стали и сечением столбчатых кристаллов, вырастающих из этих зерен. Чем крупнее зерно стали, тем крупнее кристаллы шва, и наоборот, чем мельче зерно стали, тем тоньше столбчатые кристаллы (рис. 24, а и б). К- В. Лю-бавский и Ф. И. Пашуканис впервые показали, что, подвергнув чеканке подлежащие ручной сварке кромки аустенитной стали и измельчив таким образом зерно в основном металле, можно в значительной степени измельчить и строение аустенитного шва. Аналогичная картина наблюдается и в случае сварки литых жаро-  [c.102]

Чем выше содержание хрома, никеля и других легирующих элементов, тем ниже минимальная концентрация углерода, вызывающая появление первичных карбидов, причем средняя аналитическая концентрация углерода в сварочной ванне действительно ниже эвтектической. Однако в междуосных пространствах и меж-кристаллическнх прослойках местная концентрация углерода, вследствие ликвации, по-видимому, значительно более высокая, чем средняя аналитическая, и достаточна для выпадения карбидов из жидкого металла. Первичные карбиды, выпадающие в сварочной ванне в виде самостоятельной структурной составляющей в процессе ее кристаллизации, как уже указывалось, не следует смешивать со вторичными карбидами, т. е. с избыточной фазой, образующейся в закристаллизовавшемся сварном шве в результате фазовых превращений (распада аустенита).  [c.111]

Аустенитно-ферритные и ферритно-аустенитные швы. Феррит дендритной формы, видимый на микрошлифе сварного шва, является, как уже указывалось, первичным б-ферритом, который образуется в процессе первичной кристаллизации сварочной ванны. Это обстоятельство указьГвает на необходимость критического подхода к диаграмме состояния сплавов Р е—Сг—Ni—С, которая, как и диаграмма состояния железо—углерод отражает явления, происходящие в условиях равновесной кристаллизации и не учитывает специфических особенностей сварки — чрезвычайно больших скоростей нагрева и охлаждения металла. Отсутствие превращения б Y -> а в сварных швах при охлаждении в обычных условиях не исключает возможности превращения двухфазных аустенитно-ферритных швов в однофазные путем соответствующей термической обработки.  [c.129]

Важнейшей особенностью ЭШС, обусловленной специфическими для этого способа сварки термическим циклом, малой скоростью перемещения источника нагрева, характером кристаллизации сварочной ванны, отсутствием, как правило, угловых деформаций, является высокая стойкость металла шва против образования горячих трещин. При ЭШС без особых ухищрений удается получить свободные от трещин чистоаустенитные швы на сталях и сплавах, которые лишь с большим трудом поддаются сварке под флюсом или ручной электродуговой сварке. При ЭШС, например, вовсе нет необходимости следить за обязательным наличием первичного феррита в металле шва. При ЭШС во многих случаях нет нужды столь строго ограничивать содержание фосфора и других вредных примесей в шве. При ЭШС, наконец, если говорить о получении швов без горячих трещин, нет нужды применять неокислительные флюсы-шлаки, столь необходимые при сварке под флюсом или ручной электродуговой сварке.  [c.325]

Приведенными схемами, разумеется, далеко не исчерпываются возможности получения сварных соединений аустенитных жаропрочных сталей и сплавов без их расплавления, т. е. диффузионным способом. Испо льзование той или иной из рассмотренных схем, так же, как и любой другой гипотетической схемы диффузионной сварки, зависит от композиции прослойки и свариваемого металла. Выбор композиции прослойки облегчается знанием растворимости элементов, т. е. знанием диаграммы состояния данной системы сплавов. При рассмотрении проблемы горячих трещин в аустенитных швах (см. гл. IV) мы привлекаем равновесные и приведенные (псевдобинарные) диаграммы состояния для понимания поведения данного элемента, его влияния на структуру и горячеломкость аустенитных швов. Вследствие неравновес-ности процессов первичной кристаллизации сварочной ванны при различных способах сварки плавлением использование равновесных диаграмм состояния, естественно, лишь в первом приближении характеризует истинную картину явлений. При диффузионной сварке расплавление переходного слоя происходит быстро, как только в процессе нагрева будет достигнута температура его плавления. Но затвердевание переходного слоя (прослойки, припоя) идет достаточно медленно, чтобы можно было с полным основанием говорить о применимости равновесных диаграмм состояния для изучения закономерностей ПСП.  [c.376]

Под первичной кристаллизацией понимают роет кристаллитов из расплава при затвердевагши сварочной ванны. В результате образуется так называемая первичная структура. У таких металлов, как алюминий, медь, никель и их сплавы, при дальнейшем охлаждении первичная структура не изменяется или изменяется незначительно. Поэтому от нее зависят свойства сварного шва. Для определения первичной структуры необходимо знать условия ее образования и влияющие на нее факторы.  [c.30]

Большинство неразъемных соединений получают сваркой плавлением с использованием мощного теплового источника — электрической дуги. При этом основной металл и электрод плавятся, образуя жидкую ванну. Температуры сварочной ванны и примыкающего металла достигают высоких значений. После кратковременного нагрева следует достаточно быстрое охлаждение, т.е. возникает своеобразный термический цикл, который определяет строение сварного шва и околошовной зоны. При сварке углеродистой стали структура околошовной зоны (зоны термического влияния) формируется в соответствии с диаграммой состояния Fe — ГезС (рис. 10.2). Шов имеет структуру литого металла, которая образуется в процессе первичной кристаллизации. Из-за направленного отвода теплоты кристаллы здесь приобретают столбчатую форму, вытянутую перпендикулярно линии сплавления.  [c.288]

Прерывистость характера первичной кристаллизации сварочной ванны влияет еще на один вид ликвации в металле шва, а именно слоистую неоднородность. Кристаллизационный слой состоит из трех характерных участков. Нижний участок обогащен, а верхний обеднен ликвирующими примесями по сравнению со средним участком.  [c.87]


Смотреть страницы где упоминается термин Первичная кристаллизация металла сварочной ванны : [c.122]    [c.209]    [c.164]   
Смотреть главы в:

Сварка и резка металлов  -> Первичная кристаллизация металла сварочной ванны



ПОИСК



Ванны

Ванны ванны

Кристаллизация

Кристаллизация металла сварочной

Кристаллизация металла сварочной ванны

Кристаллизация металла шва

Кристаллизация первичная

Первичная кристаллизация металлов

Сварочная ванна



© 2025 Mash-xxl.info Реклама на сайте