Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сера-вольфрам

Углерод, связывая молибден и вольфрам в карбиды, уменьшает количество этих элементов в твердом растворе и тем самым отрицательно влияет на жаропрочность. Поэтому легирование такими элементами, как титан, ниобий, тантал, связывающими углерод, приводит к увеличению жаропрочности Обычно в жаропрочных сталях аустенитного класса углерода содержится около 0,1%. Жаростойкость снижается при введении в сталь легкоплавких и на растворимых в железе металлов (свинец, висмут, и др.), а также образующих с железом легкоплавкие эвтектики (сера, селен).  [c.102]


Сера и фосфор — вредные примеси. Сера способствует образованию трещин, а фосфор — резкому снижению ударной вязкости стали. Хром увеличивает прочность, прокаливаемость, сопротивление ползучести без снижения пластичности. При содержании хрома свыше 12 % сталь становится коррозионно-стойкой в атмосфере и во многих других промышленных средах. Никель — повышает прочность, пластичность, ударную вязкость и прокаливаемость, снижает температуру перехода в хрупкое состояние. Молибден делает аустенитную сталь более жаропрочной и коррозионно-стойкой в ряде высокоагрессивных сред. Титан и ниобий увеличивают прочность и жаропрочность сталей, а вольфрам— жаропрочность высоколегированных сталей.  [c.223]

Отличительная особенность этих металлов — чувствительность к незначительной концентрации примесей внедрения вследствие чрезвычайно малой растворимости последних (до 0,0001 %). Поэтому промышленные хром, молибден и вольфрам даже после высокой очистки являются пересыщенными твердыми растворами, особенно при понижении температуры это приводит к хладноломкости. Даже незначительные количества кислорода, азота, углерода, серы н фосфора сообщают хладноломкость хрому, молибдену и вольфраму. Локальная концентрация примесей повышается с увеличением размеров зерна, приводя к появлению хрупкости.  [c.111]

Рис. 121. Серия микрофотографий, снятых с одного и того же участка поверхности образца вольфрам-молибден при нагреве в вакууме Рис. 121. Серия микрофотографий, снятых с одного и того же участка поверхности образца <a href="/info/530773">вольфрам-молибден</a> при нагреве в вакууме
Основными легирующими элементами стали являются хром, никель, молибден, вольфрам, ванадий, титан, алюминий, марганец, кремний, бор. Неизбежными примесями в сталях являются марганец, кремний, фосфор, сера. Легирующие элементы, вводимые в углеродистую сталь, изменяют состав, строение, дисперсность и количество структурных составляющих и фаз. Фазами легированной стали могут быть твердые растворы — легированный феррит и аустенит, специальные карбиды и нитриды, интерметаллиды, неметаллические включения — окислы, сульфиды, нитриды. Как правило, за счет легирования повышаются прочностные характеристики стали (пределы прочности и текучести).  [c.66]


Кроме кобальта-60 по указанной реакции получают также серу-35, железо-55 и 59, селен-75, цезий-134, европий-154, вольфрам-185, иридий-192, таллий-204 и некоторые другие радиоактивные изотопы.  [c.68]

Элементы, входящие в состав указанных инструментальных материалов углерод, кислород, кремний, алюминий, фосфор, сера, ванадий, титан, хром, марганец, железо, кобальт, никель, вольфрам — могут быть активированы. В результате активации будет получен изотоп соответствующего элемента с присущим ему излучением, периодом полураспада и другими характеристиками.  [c.98]

Примечание. Можно использовать также серый чугун (износ близок к меди обработка на небольших мощностях, при вращении инструмента — на повышенных) вольфрам (средняя величина износа, для прошивания отверстий небольшого диаметра и разрезки сталей и жаропрочных сплавов при использовании в качестве инструмента фасонного проката — прутков и лент).  [c.686]

Вольфрам — металл серо-стального цвета, один из самых тяжелых и самый тугоплавкий. Последнее обстоятельство затрудняет непосредственную выплавку, и его добывают из руд химическим путем с образованием вольфрамовой кислоты или вольфрамового  [c.99]

Спектральный анализ дает возможность определить все основные элементы легированной стали хром, молибден, вольфрам, марганец, кремний, ванадий, титан, ниобий, никель. Углерод, серу и фосфор методом спектрального анализа определить не удается. Точность анализа достаточна для определения марки стали.  [c.65]

Принятая государственными стандартами СССР система обозначения марок стали даёт возможность легко установить химический состав данной марки стали. В этой системе двузначные числа с левой стороны букв в обозначениях марки стали показывают среднее содержание углерода в сотых долях процента, а буквы справа от этих чисел обозначают Г—марганец, С— кремний. X—хром, Н—никель, В — вольфрам, Ф—ванадий, М —молибден, Ю—алюминий цифры после букв обозначают процентное содержание соответствующего элемента в целых единицах. Обозначения марок высококачественной стали, более чистой по сравнению с качественной в отношении серы и фосфора и с повышенными механическими свойствами, дополняются буквой А в конце обозначения.  [c.359]

Современные методы пайки весьма разнообразны и охватывают все марки углеродистых и легированных сталей (в том числе инструментальные и нержавеющие), твёрдые сплавы, серые и ковкие чугуны, медь, никель, алюминий, свинец, вольфрам и и сплавы, благородные и редкие металлы и т. д., причём в широких пределах возможна прочная спайка разнородных металлов.  [c.443]

Фосфор Сера не более хром Никель Молибден Вольфрам  [c.283]

Оборудование. Расчет потребного количества оборудования производят по формуле (5), по данным табл. 2—5 и по следующим нормам времени на производство анализов марганец 4 мин кремний, сера, фосфор по 5 мин никель, хром по 6 мин, вольфрам 7,мин.  [c.184]

При помощи этого прибора можно быстро определять состав легированных сталей по элементам хром, вольфрам, ванадий, молибден, никель, титан, марганец, кремний. Определить углерод, серу и фосфор этим методом нельзя. Для проведения анализа прибор приставляется к анализируемой трубе и включается электрический ток. Между электродом прибора и трубой образуется электрическая дуга. Находящиеся в исследуемом металле химические элементы (хром, молибден и пр.) под влиянием электрической дуги испаряют-  [c.127]

Сера S (г). ... Сера Sj (г). . . . Сурьма Sb (т). . Селен Se (т). . . Селен Se (г). . . Селен Se2 (г). . . Кремний Si (т). . Олово Sn (т), белое Олово Sn (т), серое Стронций Sr (т) Теллур Те (т). Торий Th (т). . Титан Ti (т). . Таллий Т1 = а (т) Уран и = а (т). Ванадий V (т). Вольфрам W (т) Цинк Zn (т). . Цирконий Zr (т)  [c.191]

Вольфрам. Порошок вольфрама ( -модификация с кубической кристаллической решеткой, период которой а =0,316 нм) получают восстановлением WO3 водородом или углеродом (сажей) его цвет изменяется в зависимости от зернистости от черного (мелкие порошки) до серого (крупнозернистые порошки).  [c.96]

Примерами регулирования центров кристаллизации являются производство стали с природным мелким зерном регулирование центров графитизации в сером и ковком чугуне производство мелкозернистого/феррохрома модифицирование силумина и других алюминиевых и магниевых сплавов, добавки теллура в цинк, хрома в а-латунь, окиси тория в вольфрам и т. д.  [c.189]


Лавеса фазы 18 Латунь 49. 278. 284, 285 Лауэ метод 156 Легирующие элементы алюминий 47 бор 44 ванадий 46 вольфрам 45 кобальт 44 кремний 40 марганец 40 медь 44 молибден 45 никель 44 ниобий 47 сера 42 тантал 47 титан 46 фосфор 41 хром 42 Ледебурит 34. 35 Лента 219, 457 Ликвация 431  [c.476]

По результатам обработки данных промышленных предприятий черной металлургии и металлургических заводов других отраслей в зависимости от производительности химико-аналитического контроля было выделено несколько групп контролируемых элементов. Для расчета количества материала, необходимого для выпуска СО, приняты следующие значения производительности одного оператора в смену (несколько меньше, чем среднеотраслевая производительность) углерод - 40 средних результатов анализа в смену сера — 25 фосфор и марганец — 15 кремний, хром, никель, медь и азот — 8 молибден, вольфрам, титан, ванадий, алюминий, кобальт и ниобий — 4.  [c.77]

На грифитизацию чугуна существенное влияние оказывает углерод, кремний, никель, алюминий, медь и титан, которые ускоряют процесс графитизации. Такие элементы, как хром, марганец, вольфрам, молибден, сера и кислород, наоборот, затрудняют гра-фитизацию и способствуют получению сорбитообразного перлита.  [c.61]

Вольфрам — чрезвычайно тяжелый твердый металл серого цвета. Среди металлов он обладает наиболее высокой температурой плавления (3380°С). Вольфрам получают из руд различного состава главным образом из вольфрамита пРе Л 04хгаМп Л 04 и шеелита Са 04 промежуточным продуктом является вольфрамовая кислота Н21У04, из которой путем восстановления водородом при нагреве до 900 °С получают металлический вольфрам в виде мелкого порошка с размером зёрен 1...7 мкм. Из этого порошка прессуют стержни, которые подвергают сложной термической обработке в атмосфере водорода, ковке и волочению в проволоку (диаметром до 0,01 мм), прокатке в листы и т. п.  [c.28]

В системах с ограниченной растворимостью образуются связи второго типа. Обратимся к композиту никель — вольфрам. Согласно Хансену и Андерко [14], никелевый сплав с 38% вольфрама находится в равновесии с твердым раствором на основе вольфрама, содержащим малые количества никеля (менее 0,3%). Такое равновесие предполагает равенство химических потенциалов. Этот принцип был использован Петрашеком и др. [33] при разработке сплава на Ni-основе для композита никелевый сплав — вольфрам. Вначале был использован сплав Ni-S0 r-25W. Затем в него были добавлены титан и алюминий. Во второй серии сплавов содержание вольфрама было понижено он был частично заменен другими тугоплавкими металлами ниобием, молибденом и танталом. Совместимость этих сплавов с вольфрамовой проволокой оказалась выше, чем у стандартных жаропрочных сплавов, но все же ниже, чем у сплавов, легированных только вольфрамом. Дальнейшее существенное улучшение, совместимости достигается добавками алюминия и титана, однако механизм влияния этих элементов на совместимость отличен от рассматриваемого здесь регулирования химических потенциалов. По заключению авторов, во избежание существенного уменьшения сечения вольфрамовой проволоки за счет диффузии следует использовать проволоку диаметром 0,38 мм. После выдержки при 1366 К в течение 50 ч глубина проникновения составляла 26 мкм, что соответствует коэффициенту диффузии (2-f-5) -10 ы / . Уменьшением сечения. волокна за счет диффузии можно объяснить более крутой наклон кривых длительной прочности в координатах Ларсена — Миллера для композита по сравнению с проволокой.  [c.132]

С помощью спектрального анализа с некоторыми ограничениями в стали и чугуне выявляются марганец, хром, медь, ванадий, вольфрам, кобальт, никель, титан и магний. Однако содержание углерода этим методом можно определить лишь для простых углеродистых сталей. Количественного спектрального анализа углерода, фосфора, серы и кремния в легированных сталях не делают, поэтому, если изменяется лишь процентное содержание этих составляющих, стали рассортировать спектральным методом лельзя.  [c.119]

Медь-вольфрам. В этой серии образцоь основное внимание было уделено высоте заряда взрывчатых веществ, ее влиянию на свойства материала и качество соединения. Объемное содержание волокон было одинаковым и составляло 17%.  [c.165]

Вольфрам — металл серо-стальпого цвета, один из самых тяжелых п тугоплавких. Последнее обстоятельство затрудняет пепосродственную выплавку, п вольфрам добывается из руд химическим путем с образованием вольфрамовой кислоты или вольфрамового ангидрида, из которых восстанавливают металлический порошок вольфрама для дальнейшей переработки методами ь е-таллокерамики в монолитный металл.  [c.179]

Условные обозначения марок проволоки состоят из индекса Св (сварочная) и следующих за ним цифр и букв. Цифры, следующие за индексом Св, указывают среднее содержание углерода в сотых долях процента. Химические элементы, содержащиеся в металле проволок, обозначены следующими буквами А — азот (только в высоколегированных проволоках) Б — ниобий В — вольфрам Г — марганец Д — медь М — молибден Н — никель С — кремний Т — титан Ф — ванадий X — хром Ц — цирконий Ю — алюминий. Цифры, следующие за буквенными обозначениями химических элементов, указывают среднее содержание элемента в процентах. После буквенного обозначения элементов, содержащихся в небольших количествах, цифры не проставляют. Буква А на конце условных обозначений марок низкоуглеродистой и легированной проволоки указывает на повышенную частоту металла по содержанию серы и фосфора. В проволоке марки Св-08АА сдвоенная буква А указывает на более низкое содержание серы и фосфора по сравнению с их содержанием в проволоке марки Св-08А.  [c.325]

Вольфрам W (Wo framium Сероватобелый блестящий металл. Распространенность в земной коре 1 10 /о- л = =3410 С, = 6000° С плотность 19,3. В природе встречается в виде соединений — солей вольфрамовой кислоты. Металлический вольфрам восстанавливается из трехокиси вольфрама WOj водородом. Обладает наивысшей тугоплавкостью из всех металлов. При обычных условиях не взаимодействует с водой и воздухом, при нагревании соединяется с кислородом, фтором, хлором, серой, азотом, углеродом, кремнием. Растворяется в царской водке, смеси фтористоводородной и азотной кислот и в расплавленных щелочах.  [c.383]


Кроме перечисленных, можно использовать 1) сплав МЦ-4 (износ и стабильность процесса бошзки к медному инструменту для обработки твердых сплавов) 2) серый чугун (износ близок к меди) для обработки на небольших мощностях, а при вращении инструмента — на повышенных) 3) вольфрам (средняя величина износа для прошивки отверстий небольшого диаметра и разрезки стали и жаропрочных сплавов при использовании в качестве инструмента фасонного проката — прутков и лент). Медь для изготовления инструмента наиболее целесообразно использовать б виде фасонного проката. Профиль инструмента пз алюминиевых сплавов не должен иметь элементов малого сечения.  [c.380]

Плавки 1 и 2 проводились с проплавлением восстановительной части при отключенной печи, на плавках 3 и 4 восстановительный период плавки проводился под током. Температура шлака, замеренная вольфрам-молибденовой термопарой в конце процесса, оказалась равной для плавки 1 2200° К и для плавки 2 2190° К, что близко к расчетной величине. Сравнение результатов плавок, проведенных по обоим технологическим вариантам, показывает, что при проведении плавок 1 и 2 тепла экзотермических реакций и расплава очевидно несколько не хватало, в связи с чем восстановительные реакции прошли менее полно (извлечение хрома примерно на 3% меньше) при повышенном содержании кремния в металле. Из приведенных данных следует также, что при получении под дугами высококремнистого си-ликохрома (плавки 3 и 4) дополнительно науглероживания расплава не наблюдается. Использование кремния при обоих технологических вариантах находится в пределах 90%. Содержание серы в металле оказывается значительно меньшим, чем при вне-печном алюминотермическом процессе,  [c.144]

В этой книге рассматрявается производство черных металлов в последовательности современной технологической схемы производства 1) выплавка чугуна из железной руды — доменное производство 2) прямое получение желюа и металлизованного сырья 3) выплавка стали из чугуна, металлического лома 4) обработка стальных слитков и заготовок на прокатных станах и получение готовых изделий и полуфабрикатов. Обычно черными металлами называют железо и сплавы железа с различными элементами. Основным элементом, придающим железу разнообразные свойства, является углерод. Сплавы с содержанием углерода до 2,14 % называют сталями, а сплавы с более высоким содержанием углерода — чугунами. Помимо углерода, в состав стали и чугуна входят различные элементы. Легирующие элементы улучшают, а вредные примеси ухудшают свойства железных сплавов. К легирующим элементам относятся марганец, кремний, хром, никель, молибден, вольфрам и др. К вредным примесям — сера, фосфор, кислород, азот, водород, мышьяк, свинец и др. В зависимости от содержания легирующих сталь или чугун приобретают различные свойства и могут быть использованы в той или иной области промышленности. Так, например, инструментальные стали с высоким содержанием углерода используют для изготовления режущего обрабатывающего инструмента. При повышении содержания хрома и никеля стали приобретают антикоррозионные свойства (нержавеющие стали). Стали с повышенным содержанием кремния используют в электротехнике в виде трансформаторного железа и т. п. Чугун с высоким содержанием кремния используют в литейном деле. Для деталей, выдерживающих повышенные нагрузки, применяют высокопрочные чугуны, содержащие хром, никель и т.д. Металл, используемый в промыш-деииости, сельском хозяйстве, строительстве, на транспорте и т.д., имеет различную форму, размеры и физические свойства. Придание металлу требуемой формы, необходимых размеров и различных свойств достигается обработкой слитков стали давлением и последующей термической обработкой. Для получения различной формы изделий применяют свободную ковку, штамповку на молотах н прессах, листовую штамповку, прессование, волочение и прокатку. На прокатных станах обрабатывается до 80 % всей выплавляемой стали, на них производят листы, трубы, сортовые профили, рельсы, швеллеры, балки и т. п.  [c.8]

Значительную спекаемость имеют концентраты с повышенным содержанием щелочей. В этом случае наблюдается оплавление и окомкование концентрата и повышение содержания серы в огарке. Условиями нормального протекания процесса обжига являются хорошее перемешивание обжигаемого материала и свободное удаление из сферы реакции сернистого газа. Очень важно для нормального протекания процесса обжига обеспечить равномерную загрузку концентрата, постоянство шихты по содержанию молибдена и заданному гранулометрическому составу концентрата. Шихтовка партий концентрата производится таким образом, чтобы обеспечить максимальную продолжительность работы на концентрате с постоянным содержанием молибдена с учетом следующих коэффициентов перехода примесей в сплав медь 85 %, сера 60 /о, мышьяк 80%, олово 70 7о, сурьма 50%, вольфрам 100%, свиней 5 %. Температурный режим для восьмиподовой печи стараются поддерживать следующим  [c.284]

Определенная аналогия между металлами VIA группы (хром, молибден, вольфрам) и полупроводниками с решеткой алмаза № ковалентной связью (алмаз, кремний, германий, серое олово) привела к исследованию специфики пластической деформации в кристаллах с направленными связями. В таких кристаллах должны быть велики силы трения между движущимися дислокациями и решеткой (см. гл. VIII)—соответственно велики напряжения Пайерлса —Набарро.  [c.33]

Углерод в чугунах может находиться в виде химического соединения — цементита (такие чугуны называют белыми) или в свободном состоянии в виде графита — частично или полностью (в этом случае чугуны называют серыми). Получение того или иного вида чугуна зависит в основном от его химического состава и скорости охлаждения. Такие элементы, как кремний, титан, никель, медь и алюминий, способствующие выделению графита, называют графитизирующими. При введении таких элементов, как марганец, молибден, сера, хром, ванадий, вольфрам, углерод входит в химическое соединение с железом, образуя цементит (Feg ). Эти элементы называют антиграфитизирующими, или тормозящими графитизацию. При одном и том же химическом составе структура чугуна может быть различной в зависимости от толщины отливки. Чтобы обеспечить необходимую структуру отливок разной толщины, надо знать их химический состав. Для определения химического состава отливок опытным путем строят структурные диаграммы. Например отливка имеет химический состав С + Si = 4 % (линия аа. на рис. 8.1). При таком составе в отливке толщиной до 10 мм получится белый чугун, толщиной до 20 мм — половинчатый, толщиной до 60 мм — серый перлитный и толщиной свыше 60 мм — серый ферритно-пер-литный. При толщине отливки свыше 120 мм и указанном химическом составе чугун будет серый ферритный.  [c.133]

Так, на основании литературных данных и ГОСТ 12348—66 в 1976 г. в отраслевую систему были внесены четыре серии СО высшей точности с аттестованным содержанием марганца в сталях для учета влияния на результаты измерений таких элементов, как хром, вольфрам и кобальт. Впоследствии было показано, что фотометрическая методика определения массового содержания марганца в сталях может использоваться без предварительного отделения мешающих компонентов в диапазоне 0,05 — 15 % Мп и, следовательно, для дифференциальной аттестации содержания марганца в государственных СО для химического и спектрального анализа достаточно одной серии СО вьюшей точности.  [c.97]

Стилоскопирование производится в следующем порядке зачищаются электрод и изделие устанавливается зазор между электродом и изделием 1—3 мм и зажигается дуга отыскивается нужная группа линий и производится оценка содержания искомых элементов. Определение элементов проводится в следующей носледователь-ности ванадий, хром, молибден, никель, титан, вольфрам, марганец, ниобий, кобальт, кремний. Следует отметить, что содержание углерода, фосфора и серы спектральными методами не определяется. Точность определения содержания элементов при стилоскопировании зависит от выбранной пары спектральных линий и в общем случае составляет 20 % от абсолютной величины концентрации элемента в стали. Например, если содержание элемента оценено 1 %, то фактическое содержание может находиться в пределах 0,8—1,2 %. При проведении стилоскопирования сталей, близких по содержанию легирующих элементов и назначению, целесообразно пользоваться рекомендациями, приведенными в табл. 3.3.  [c.67]



Смотреть страницы где упоминается термин Сера-вольфрам : [c.222]    [c.256]    [c.64]    [c.393]    [c.213]    [c.284]    [c.91]    [c.255]    [c.168]    [c.146]    [c.72]    [c.458]    [c.468]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Сера-вольфрам



ПОИСК



Вольфрам

Малышев Термодинамическое и молекулярное подобия гексафторидов серы, молибдена, вольфрама, урана. Критические параметры гексафторидов элементов VI, VII, VIII групп периодической системы элементов Д. И. Менделеева



© 2025 Mash-xxl.info Реклама на сайте