Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Платина-кремний

Одним из видов нанесения защитных покрытий на детали из высокотемпературных материалов служит метод окунания в расплав [1]. Такой метод используется для кратковременной защиты покрытий при горячей обработке давлением молибдена и ниобия. Для нанесения качественного покрытия необходимо определение оптимальных температур и состава расплава, при которых происходит удовлетворительное смачивание твердых металлов расплавом. Смачивание твердых молибдена и ниобия расплавами на основе алюминия исследовали на установке, позволяющей раздельный нагрев твердой и жидкой фаз [2]. Опыты проводили в среде гелия, температуру фиксировали платина — платинородиевой термопарой. В качестве объектов исследования использовали молибден и ниобий после электронно-лучевой плавки, алюминий чистоты 99,98% и порошки легирующих компонентов кремния, титана и хрома марки ч. д. а. Для экспериментов готовили навески одинаковой массы 500 мг. При достижении твердой подложкой температуры опыта навеска плавилась и соприкасалась с подложкой, время контакта при заданной температуре составляло 2 мин, по истечении которого каплю фотографировали аппаратом Зенит-С на  [c.55]


С (сплавы платины с родием) и даже до 2000° С (иридий или его сплавы с родием). Нагреватели представляют собой проволоку диаметром 0,5—0,7 мм или ленту толщиной 10—30 мк. Наиболее желательная атмосфера для таких печей — воздух (окислительная атмосфера). В восстановительной среде возможны химические реакции материала нагревателя с продуктами восстановления керамики или примесями, содержащимися в керамике (в основном опасен кремний).  [c.279]

Нитевидные кристаллы могут быть получены выращиванием из пересыщенной газовой фазы. Так как в этом случае усы растут вследствие притока атомов из газовой фазы, то с повышением температуры скорость роста и диаметр усов увеличиваются. Процесс проводят в предварительно вакуумированном сосуде, по длине которого создают перепад температур, зависящий от характера материала получаемых усов. Испарением в вакууме с последующей конденсацией паров получают усы цинка, серебра, платины, бериллия, кремния и других металлов. Усы железа, серебра, меди и некоторых других металлов можно получить электролитическим осаждением.  [c.182]

Диаграммы состояния сплавов кальция с алюминием, медью, водородом, золотом, свинцом, магнием, никелем, кремнием, серебром, оловом и цинком хорошо изучены и построены почти полностью диаграммы состояния сплавов кальция с сурьмой, бериллием, висмутом, бором, кадмием, литием, ртутью, азотом, платиной, натрием и таллием изучены недостаточно и построены лишь частично.  [c.937]

Галлий — Гл Кремний - Кр (К) Платина -Пл  [c.233]

При уменьшении количества азотной кислоты до 5 мл можно употреблять данный реактив для травления серебра, золота, платины, осмия, палладия и их сплавов. Время травления доходит до нескольких минут. Образующуюся на поверхности шлифов серебра темную пленку удаляют раствором аммиака или цианистого калия. Реактив с повышенной концентрацией глицерина предложено применять для выявления эвтектических ячеек в сплавах железо—углерод и железо—углерод—кремний высокой чистоты [58]. Границы эвтектических ячеек обнаруживаются из-за выделения на них пузырьков газа.  [c.60]

Платина 6 Кремния одноокись 31  [c.611]

Пытались также проводить подобные опыты, добавляя к железу, помимо углерода, различные вещества магний, кремний, бериллий, никель, кобальт, алюминий, медь, платину, теллур, ванадий, молибден, титан, бор, марганец, окись урана и т. д. Повлиять на расположение кристаллов в железе пытались, помещая охлаждаемую литейную форму в сильное магнитное поле.  [c.240]

Тантал, вольфрам, иридий, родий, золото, платина (без доступа воздуха), эбонит,резина(до бО Уу), андезит, стекло, бакелит, фаолит Те же и, кроме того, сплав железа с кремнием (14—16% 8 ), антихлор (16—17% 81, 2,5— З /п Мо), свинец, винипласт Те же, что и для концентрированной соляной кислоты при высокой температуре  [c.83]


Пары свинца, цинка, висмута и кремния. Выделяясь из оцинкованного железа, латуни и латунных припоев, пары свинца, цинка, висмута и кремния вызывают межкристаллитную хрупкость платины.  [c.498]

Кварц не оказывает действия до 1000° С, но при более высоких температурах вместо него следует применять графит, карбид кремния, спеченный глинозем последний применяют обычно в водородной атмосфере или в других восстановительных средах, при которых изоляционные материалы, содержащие кремний, вызывают загрязнение границ зерен платины [37].  [c.500]

Схема устройства для силицирования с регулируемой доставкой кремния показана на рис. 94. Образец 6 помещают в патроне 5, в нижней части которого расположен тигель 8 с кремнием. Патрон закрывают крышкой 3 с отверстием. Образец и кремний нагреваются печами сопротивления 4 и 7 с автономной регулировкой температуры. Температуру измеряют платина-платинородиевыми термопарами /. Устройство помещают в камеру, которую откачивают до давления —10 мм рт. ст., после чего патрон закрывают стержнем 2 и нагревают. Необходимая при данной температуре скорость доставки кремния к поверхности образца достигается подбором диаметра отверстия в патроне и тигле, изменением температуры на кремнии и другими параметрами.  [c.234]

При высоких температурах платина взаимодействует со многими элементами, а именно, с серой, бором, кремнием, фосфором, мышьяком, углеродом.  [c.112]

При высоких температурах на платину очень сильно действуют расплавлениые углекислые соли щелочных металлов, сульфиды и щелочи. Небезопасны также вещества, которые могут отдать платине галогены. В, 5 или Р. Особенно сильно платина реагирует с фосфором, который снижает ее точку плавления и делает ее хрупкой. Поэтому избегают применения фосфорных геттеров (см, 27) в присутствии платины. Кремний с платиной образует сплавы, углерод и его соединения (масла и жиры) действуют на накаленную платину только Б присутствии примесей (81, Р, 5, Аз, 5е). Окись магния также образует сплавы с платиной при высоких температурах. Поэтому избегают производить плавку платины  [c.113]

Наконец, перечислим металлы, которые не перешлп в сверхпроводящее состояние вплоть до указанных в скобках температур. Золото (0,05° К), медь (0,05° К), висмут (0,05° К), магнии (0,05° К) и германий (0,05° К) были исследоваиы Кюрти и Симоном [260] кремний (0,073° К), хром (0,082° К), сурьма (0,152° К), вольфрам (0,070° К), бериллий (0,064° К) и родий (0,086° К) исследовались Алексеевским и Мигуновым [315] литий (0,08° К), натрий (0,09° К), калий (0,08° К), барий (0,15° К), иттрий (0,10° К), церий (0,25° К), празеодим (0,25° К), неодим (0,25°К), марганец (0,15° К), палладий (0,10° К), иридий (0,10° К) и платина (0,10° К) изучались Гудменом [316] кобальт (0,06° К), молибден (0,05° К) и серебро (0,05° К) были исследованы Томасом и Мендозой [317].  [c.589]

Основным легирующим элементом в титановых сплавах является алюминий. За редким исключением, он присутствует во всех сплавах на основе титана. Поэтому значение системы Т1 —А1 для титановых сплавов можно сравнить со значением системы Ее —С для сталей. Следующими по важности и распространенности легирующими элементами являются ванадий и молибден, образующие с 0-фэзой титана непрерывный ряд твердых растворов. Применяют легирование промышленных сплавов Сг, Мп, Ее, Си, 8п, 2г, W. Для повышения стойкости титана в сильных коррозионных средах применяют "катодное" легирование в виде небольших добавок палладия и платины. Из неметаллов наиболее важное значение имеет ограниченное легирование кремнием, кислородом, углеродом, бором.  [c.11]

Силициды обладают высокой стойкостью против действия кислот, их смесей и щелочей, а некоторые из них и против расплавленных металлов. Так, дисилицид молибдена до 1000° С не реагирует с расплавленным свинцом, оловом и натрием. Цинк, нагретый до 800° С, может растворять до 1% кремния, который выделяется при охлаждении расплавленное серебро, а также ртуть практически не действуют на дисилицид молибдена. Активно реагирует с дисилицидом молибдена расплавленный алюминий, образующий алюминид молибдена. Расплавленные железо, медь, хром и платина реагируют с MoSi образованием двойных и тройных силицидных фаз.  [c.432]

Алюминий позволяет получить адгезию к ситалловым подложкам порядка 1,5-10 —2,0-10 Па. Все металлы, у которых температура плавления Тпл больше 1400 °С, а также магний и алюминий, обладают хорошей адгезией к кремнию, причем эти металлы, за исключением платины и палладия, обладают также хорошей адгезией к 5Ю2. Алюминий, кроме того, активно раскисляет поверхность кремния и хорошо травится. Он позволяет в первом приближении решить всю проблему коммутации интегральных и гибридных интегральных схем — создание омических контактов, пленочных проводников, внешних выводов (алюминиевая проволока, присоединяемая термокомпрессией).  [c.446]


При испытании металлов и сплавов в ртути добавление к ним титана и магния увеличивает коррозионную стойкость первых [1,61], [1,65]. Предполагается, что окислы, образующиеся в результате взаимодействия титана и магния с кислородом, препятствуют взаимодействию металлов с ртутью. При температуре 600° С в ртути, ингибированной титаном и магнием, достаточной стойкостью обладают низкоуглеродистая сталь сталь, легированная 20% молибдена сталь, легированная 8% хрома, 0,5% алюминия и 0,3% молибдена сталь, легированная 5% хрома, 0,5% молибдена и 1,5% кремния а также вольфрам и молибден. При температуре 500°,С можно применять стали легированную 1) 5% хрома 2) 1,5% хрома и 1,3% алюминия 3) 5% хрома, 1,2% меди или 4,5% молибдена ферритные хромистые стали. Нестойки в ртути аустенитные нержавеющиестали, бериллий (при температуре300°С), тантал, ниобий, кремний, титан, ванадий, никель, хром и их сплавы, кобальт, платина, марганец, цирконий, алюминий, золото и серебро. Чтобы ингибировать ртуть, в нее достаточно ввести 10 мг1кг титана. Менее экономически выгодным ингибитором является цирконий [1,65].  [c.53]

Это обстоятельство позволяет полагать, что положительное влияние никеля и других легирующих веществ с малым перенапряжением водорода на повышение коррозионной стойкости конструкционных материалов может быть вполне объяснено на основе теории эффективных катодных присадок, разработанной Н. Д. Тома-шовым [111,202]. Поданным К. Видема [111,157] смещение потенциала алюминия от стационарного значения в положительную сторону вызывает увеличение скорости коррозии металла. Это говорит о том, что при температуре 200° С в отличие от комнатных температур, стационарный потенциал алюминия соответствует активной области. При введении в.алюминий легирующих компонентов с малым перенапряжением реакции разряда ионов водорода и ионизации кислорода, скорость катодного процесса увеличивается, что приводит к смещению стационарного потенциала металла в положительную сторону. При этом достигаются значения потенциала, соответствующие области пассивации, а скорость коррозии алюминия значительно снижается. Аналогичного эффекта можно добиться, поляризуя металл анодно. Действительно, анодная поляризация улучшает коррозионную стойкость алюминия в дистиллированной воде при температуре 325° С, а катодная поляризация в этом случае увеличивает скорость коррозии [111,193]. На основании изложенного можно полагать, что те легирующие компоненты с введением которых скорость коррозии алюминия при низких температурах (медь, никель, железо и др.) увеличивалась, при высоких температурах должны способствовать увеличению коррозионной стойкости металла. Приведенные рассуждения подкрепляются следующими экспериментальными данными. Ж- Е. ДрейлииВ. Е. Разер [111,193] измеряли стационарный потенциал алюминиевых сплавов в дистиллированной воде при температуре 200° С. Электродом сравнения служил образец из нержавеющей стали. Стационарный потенциал алюминиевого сплава с концентрацией 5,7% никеля оказался на 0,16 б положительнее, чем стационарный потенциал алюминиевого сплава 1100. При катодной поляризации с плотностью тока Ъмш1см-потенциал сплава 11(Ю смещался в отрицательную сторону на 1,2б, в то время как смещение потенциала сплавов, легированных 11,7% кремния, составляло 0,34 б, а сплавов, легированных 5,7% никеля, 0,12 б, что является косвенным показателем того, что на двух последних сплавах скорость катодного процесса больше, чем на алюминиевом сплаве 1100. С точки зрения теории эффективных катодных присадок, легирование платиной и медью должно оказывать положительное действие на коррозионную стойкость алюминия. В самом деле, с введением в алюминий 2% платины или меди коррозионная стойкость последнего в дистиллированной воде при 315° С значительно увеличивается [111, 193]. С этих же позиций легирование свинцом, оловом, висмутом и кадмием не должно улучшать коррозионной стойкости алюминия, что и подтверждается экспериментальной проверкой [111,193]. Как установлено К. М. Карлсеном [111,173],  [c.198]

В качестве термопар применяют медь-копе левые (однн электрод медный, другой копе-левый, т. е. из сплава меди и никеля) для измерения температур до 350 С железо-11 хромель-копе левые (хромель — сплав никеля, хрома и железа) для измерения температур до бОО " С (рис. 164), хромель-алю-мелевые (алюмель — сплав никеля, кремния, алюминия, железа и марганца) для измерения температур от 900 до 1000" С платино-платинородиевые (один электрод платиновый, другой —  [c.297]

Образует химические соединения с бериллием, бором, углеродом, азотом, кислородом, фтором, алюминием, кремнием, фосфором, серой, хлором, питалом, марганцем, железом, цирконием, ниобием, йодо м, танталом, платиной, рением.  [c.13]

Выбор огнеупоров для изготовления тиглей, по-видимому, ограничивается oKti bio кальция и двуокисью циркония. Утверждают, что окись кальция больше подходит для этой цели, чем двуокись циркония, так как она способствует лучшей очистке платины путем поглощения небольших количеств примесей обычных металлов пористыми стеиками тигля. Кроме того, слиток можно очищать от прилипшей к его поверхности извести п тем обработки соляной кислотой. Преимущество тигля из двуокиси циркония состоит в TOVI. что он не поглощает влагу. Эго делает ненужным предварительный нагрев тигля и допускает его повторное использование. Тигли из глинозема, графита или двуокиси кремния загрязняют металлы углеродом или кремнием, в результате чего металл становится хрупким.  [c.484]


Из неметаллов фосфор, мышьяк, кремний, сера, селсн, теллур и углерод разъедают металлы при температуре красного каления. Из-за этой агрессивности необходимо очень осторожно нагревать тигли и лодочку, применяемые в лаборатории для проведения спекания или сплавления в противном случае появляется опасность восстановления соединений, содсржаии перечисленные выше элементы, и взаимодействия их с платиной, что приводит к хрупкости. Фтор и хлор разъедают все металлы в нагретом состоянии. Палладий разъедается влажным хлором н бромом при комнатной температуре платина и палладий тускнеют под действием горячих газов, содержащих сульфиды.  [c.498]

Оба метода, и насыщение из засыпок и химическое оса дение из паровой фазы, применяются для осаждения не тол ко алюминия, но и других элементов, таких как хром кремний. С успехом применяются и спаренные процессы, которых перед алюминированием поверхность подложки покр вается благородными металлами, такими как платина и naj ладий.  [c.94]

Другой подход к разработке оверлейных покрытий, стойких к горячей коррозии, предполагает использование кремния либо в качестве верхнего слоя для двух- или многослойных покрытий [27], либо как главного окалинообразующего элемента в покрытиях типа Ni rSi [28]. В литературе отмечается, что применение благородных металлов, например платины в покрытиях o rAlX, позволяет получать покрытия с прекрасным сопротивлением горячей коррозии в условиях морской среды [29]. Можно сделать вывод, что из всех оверлейных покрытий, защитные свойства которым придает присутствие на поверхности пленки оксида алюминия, наибольшей стойкостью к горячей коррозии обладают покрытия с максимально возможным для данного уровня механических свойств содержанием хрома, в которые, кроме того, для оптимизации служебных характеристик с учетом конкретной рабочей среды и конкретного типа подложки добавлены такие элементы, как иттрий, кремний, платина и гафний.  [c.112]

Наиболее токсичны свинец, бериллий, соли и оксиды кадмия, ртуть и все ее соединения, селен, сурьма при длительном воздействии весьма токсичны марганец, таллий, фтористый бор, германий, соли золота, лнтий, медь слаботоксичны алюминий, висмут, галлий, кобальт, никель и его окислы, соединения хрома, кремний, серебро, церий, цинк нетоксичны — олово, платина, палладий, титан Г73].  [c.215]

Хорошим подтверждением электрохимической субмикронеоднородности поверхности сплавов может служить экспериментально наблюдаемое изменение соотношения концентраций компонентов в поверхностных слоях подобных сплавов в начальных стадиях коррозии, т. е. при протекании компонентно избирательной коррозии. Например, установлено, что в сплавах на основе титана или в нержавеющих сталях наблюдается обогащение поверхности введенными в сплав более термодинамически стабильными катодными добавками (Pd, Pt) [20, 42, 43]. В. В. Скорчелет-ти и его сотрудниками в сплавах Си—Ni в активном состоянии было зарегистрировано обогащение поверхности медью [41, с. 165]. При коррозии нержавеющих сталей, в зависимости от условий, авторами совместно с Л. Н. Волковым, установлена возможность накопления не только палладия и платины, но и других, более электроположительных по сравнению с железом, компонентов, например никеля, меди и рения [41, с. 164], кремния и молибдена [20, с. 39], а в условиях возможной пассивации даже и менее электроположительных, но более пассивирующихся компонентов, например хрома. Это вытекает из исследований А. М. Сухотина [44], авторов [20, 43], И. К. Марша-кова с сотрудниками [45]. Особенно убедительно это было доказано прямыми определениями с использованием высокопрецизионного -спектрометрического изотопного метода в работах, проведенных в институте им. Л. Я. Карпова под руководством Я. М. Колотыркина [46].  [c.68]

Для уменьшения окисляемости жидкого оловянно-свинцотого 1фШ1оя, что осс нно важно при автоматической пайке погружением печатных плат при температуре 200—300° С, их легируют третьим компонентом, й5разующим с оловом или свинцом двойную или тройную эвтектику, более богатую оловом. К таким компонентам относятся селен, кобальт, медь, никель, золото, платина, лантан, литий, натрий, магний, празеодим, кремний. Каждый из них может быть добавлен в припой в количестве 20—50% его содержания в эвтектике, богатой оловом. Начальная скорость окисления такого припоя в жидком состоянии в первые секунды при более высоких температурах и в первые минуты при более низких температурах снижается на 60—80%.  [c.90]

Неразрушающиеся заземления изготавливаются из графита, сплавов железа с кремнием (термосилид), сплавов свинца и драгоценных металлов — платины (иногда в комбинации с титаном). Электрохимической реакцией, протекающей на поверхности анодного, неразрушающегося заземления, является реакция выделения кислорода (равновесный потенциал, см. рис. 17), а в солончаковых грунтах и хлорах (равновесный потенциал +1,35в).  [c.184]

Сплав железа с кремнием (14—1б7о Высокохромистые сплавы (выше 27% Сг). Стеллит, золото, платина, эмаль Те же и, кроме того, алюминий, хромоникелевые стали, хромистая сталь, свинец Железокремнистый сплав (выше 16% 81), хромистые стали (выше 27% Сг), хромоникелевая сталь 18-8, стеллит, золото, платина, эмаль Те же и дополнительно хромистые беспористые покрытия, винипласт, кислотоупорный бетон Тантал, сплав платины с танталом, иридий, родий, стеллит, серебро Хромоникелевая сталь (18—25% Сг, 8—9%Н1 , хромоникелевая сталь с добавкой Мо, железокремнистый сплав (14—16% 81), свинец (с 4% сурьмы), стеллит, серебро, золото, иридий Те же и дополнительно хромистая сталь, платина, стекло, фарфор, керамика, эбонит, фаолит Те же, что и для концентрированной кислоты при высокой температуре и, кроме того, кремнистая медь, тантал (до концентрации кислоты 33 /ц при 10и° С), резина (до 110°)  [c.84]

Осуществление метода на практике происходит следующим образом. После декорирования напыляется сплошная угольная пленка. Эту пленку отделяют вместе с прилипшими декорирующими кристалликами и изучают в электронном микроскопе. С помощью этого метода исследуют некоторые щелочные галогениды, а в последнее время также силикаты со слоистыми структурами (слюда, каолинит). При использовании специальной техники эксперимента удалось также осуществить декорирование серебра, меди и полупроводников (кремния и германия). В качестве напыляющего материала для ионных кристаллов особенно пригодными оказались золото (метод декорирования золотом), платина и палладий. Так же могут быть использованы и другне металлы или ионные соединения.  [c.350]

Неразрушающиеся заземления изготавливают из графита, сплавов железа с кремнием (С-17), сплавов свинца и драгоценных металлов — платины (чаще в виде платинированного титана). Электрохимической реакцией, протекающей на поверхности анодного, неразрушающего заземления, является реакция выделения кислорода.  [c.272]

В последнее время при изготовлении термопар констая-тан часто заменяют близким к нему сплавом к о п е л ь (состав 56% меди и 44% никеля). Для изготовления термопар применяются также сплавы алюмель (95% никеля, прочее—алюминий, кремний и магний) и хромель (90% никеля и 10% хрома). На рис. 96 даны кривые зависимости термо-э. д. с. от разности температур горячего и холодного спаев для наиболее употребительных термопар, включая и термопару платина — платинородий (т. е. сплав 90% платины и 10% родия), применяемую для измерения температур до +1600° С. Термопары медь — константан и 260  [c.260]

Существенная интенсификация процесса силицирования тугоплавких металлов в газовых средах может быть также достигнута при использовании тлеющего разряда. В работе [12, с. 38] исследовали процесс силицирования ниобия и тантала, молибдена и вольфрама в тлеющем разряде в газовой смеси, состоящей из четыреххлористого кремния и водорода. На рис. 81 показана схема установки для насыщения в тлеющем разряде. В реакционную камеру 8 из молибденового стекла сверху впаян молибденовый анод 9, а внизу вставлена пришлифованная пробка 7 с впаянными выводами для катода и термопары (расстояние между анодом и катодом 12—16 мм). Образец 10 устанавливают на подставке-катоде 11. Молибденовый стержень катода 12 изолирован от среды фарфоровой трубкой,а платина-платинородиевая термопара 13— кварцевым чехлом. Водород подается в разрядную камеру из баллона 1 через редуктор 2 и игольчатый натекатель 6. Пары четыреххлористого кремния поступают в камеру из баллончика 3 через капиллярную трубку 5 и вакуумные краны 4. Газы из системы откачивают вакуумным ротационным насосом 18, их расход измеряют дифференциальным манометром 17, давление — ртутным манометром 15. Источник постоянного напряжения 19 обеспечивает двухполупериодное выпрямленное напряжение без сжигания пульсаций.  [c.220]


В обычно применяемых защитных оболочках наиболее легко восстанавливаются окислы кремния, железа и магния. Кремний, присутствующий почти во всех керамических материалах, представляет собой наибольшую угрозу для платинородий-платино-вых термопар. Последние легко его поглощают с образованием силицидов платины. Отсюда происходит изменение э. д. с. термопары, хрупкость термоэлектродов и все трудности применения данной термопары в восстановительной среде. Неблагоприятное влияние угольных материалов объясняется тем, что в них присутствуют примеси кремнезема. Последний при высоких температурах в контакте с углем легко восстанавливается с выделением кремния. В особенности неблагоприятным оказывается наличие в атмосфере серы, которая с кремнием, выделившимся при разложении 5102, образует соединение 5182, разлагающееся в контакте с платиной. Показания термопары искажаютсл пои наличии в среде весьма малых количеств серы, получающихся, например, при сгорании оставшихся на металлической арматуре термопары следов машинного масла, содержащего сернистыз примеси. В атмосфере промышленных печей, отапливаемых мазутом или углем, сера является обычной примесью. Лучшей защитой для термопар являются трубки из окиси алюминия, не подвергающиеся заметному действию восстановителей до очень высоких температур.  [c.194]

Однако с практической точки зрения гораздо важнее тот случай, когда наряду с подокалнной образуется и наружная окалина. Тогда возникают две возможности либо окалина и подокалина состоят из одного и того же окисла, например из закиси меди СизО в сплавах меди с палладием или платиной, либо же подокалина состоит из окисла легирующего металла, а -наружная окалина преимущественно из окисла легируемого, как это было, например, в условиях исследований Райнса со сплавами меди с кремнием, алюминием, бериллием или цинком.  [c.197]


Смотреть страницы где упоминается термин Платина-кремний : [c.396]    [c.54]    [c.344]    [c.396]    [c.337]    [c.433]    [c.267]    [c.51]    [c.504]    [c.258]    [c.227]    [c.54]    [c.79]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Платина-кремний



ПОИСК



Кремний

Платина

Платинит



© 2025 Mash-xxl.info Реклама на сайте