Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Специальные методы исследования напряжений

СПЕЦИАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ НАПРЯЖЕНИЙ  [c.130]

ГЛАВА IV. СПЕЦИАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ НАПРЯЖЕНИЙ  [c.132]

Оптический метод исследования напряжений заключается в том, что прозрачная модель из оптически активного материала (большей частью из специального органического стекла) в нагруженном состоянии просвечивается в поляризованном свете. Изображение модели на экране оказывается при этом покрыты м системой полос, форма и расположение которых определяются напряженным состоянием модели. Путем анализа, полученной картины имеется возможность найти величину возникающих напряжений.  [c.516]


В ходе развития теории упругости, определяемого обычно практическими потребностями, некоторые ее проблемы впоследствии явились предметами специальных дисциплин механики деформируемого тела Теория оболочек и пластин , Устойчивость деформируемых систем , Колебания упругих систем , Экспериментальные методы исследования напряжений , Термоупругость и др.  [c.6]

Оптический метод исследования напряжений заключается Б том, что прозрачная модель из оптически активного материала (обычно из специального органического стекла) в нагруженном состоянии просвечивается в поляризованном свете. Изображение модели на экране оказывается при  [c.475]

Повышение скорости деформации вызывает появление нестационарного поля напряжений в образце и цепи нагружения, отличного от поля, возникающего при медленном статическом нагружении. Это затрудняет сопоставление усилий и деформаций в локальном объеме материала. Такие испытания требуют разработки специальных методов исследований и анализа результатов.  [c.61]

Оптически-чувствительный полимер особого состава находит применение при поляризационно-оптическом методе исследования напряжений в сложных и ответственных деталях и узлах машин и оборудования. Поставляется по специальным техническим условиям.  [c.184]

Поляризационно-оптический метод исследования напряжений позволяет непосредственно получить лишь разность главных нормальных напряжений — Ог и их направления в плоскости модели. Для определения каждого из главных напряжений и сгг в отдельности применяются специальные методы, позволяющие определить сумму главных напряжений сг Ог, величину одного из них или величины компонент напряжений и Оу.  [c.51]

Оптический метод исследования напряжений в поляризованном свете, начало которому положил Максвелл (см. стр. 325), нашел широкое применение в XX веке. Менаже использовал его для проверки теории Фламана о распределении напряжений около точки приложения сосредоточенной силы ). Он воспользовался им также и в решении практической задачи исследования напряжений в арочном мосту ). Поляризационно-оптический метод позволяет установить разность между двумя главными напряжениями. Менаже показал, что сумму двух главных напряжений в исследуемой точке можно найти, если измерить в ней изменение толщины пластинки-модели. Эта идея была использована Кокером, сконструировавшим специальный поперечный тензометр для измерения этих изменений толщины. Он ввел также применение целлулоида, благодаря чему приготовление моделей для поляризационно-оптических испытаний было значительно упрощено. Труды Кокера ) содействовали широкой популяризации метода. Немало молодых научных работников-специалистов по фотоупругости приобрело свой первоначальный опыт в этой области как раз на практической работе в лаборатории Кокера при университетском колледже в Лондоне.  [c.460]


К числу специальных методов коррозионных испытаний относятся определение склонности металлов к межкристаллитной коррозии исследования в условиях совместного действия агрессивных сред и напряжений изучение контактной, щелевой и газовой коррозии металлов. Наибольшее значение имеют методы испытания металлов па склонность к межкристаллитной коррозии.  [c.344]

Механикой называют область науки, цель которой — изучение движения и напряженного состояния элементов машин, строительных конструкций, сплошных сред и т. п. под действием приложенных к ним сил. Современное состояние этой науки достаточно полно определяется ее основными составными частями общей механикой, к которой относят механику материальных точек, тел и их систем, сплошных и дискретных сред, колебания механических систем, теорию механизмов и машин и др. механикой деформируемых твердых тел, к которой относят теории упругости, пластичности, ползучести, теорию, стержней, ферм, оболочек и др. механикой жидкости и газа с разделами газо- и аэродинамика, магнитная гидродинамика и др. комплексными и специальными разделами механики, в частности биомеханикой, теорией прочности конструкций и материалов, экспериментальными методами исследования свойств материалов и др.  [c.4]

Наиболее сложными являются задачи экспериментального изучения распределения деформаций, и напряжений в деталях машин и элементах сооружений. Эти задачи возникают по разным причинам. Одна из них состоит в том, что в коиструкциях современных машин ответственные детали имеют настолько сложную конфигурацию, что теория сопротивления материалов далеко не всегда может дать исчерпывающий ответ на вопрос об их прочности. В таких случаях на помощь приходит изучение напряженного состояния детали или ее модели путем применения специальных экспериментальных методов исследования деформаций и напряжений. К их числу относятся тензометрия, поляризационно-оптический метод, рентгенометрия, метод лаковых (хрупких) покрытий, метод аналогий (мембранной, электрической, гидродинамической и пр.).  [c.6]

При оптическом методе исследование ведется не на самой детали, а на геометрически подобной ей по форме и характеру нагружения модели, изготовленной из оптически активного материала. Такую модель помещают в специальную установку, называемую полярископом, нагружают и просвечивают Пучком плоскополяризованного света. При этом на экране появляется изображение модели, покрытое системой полос, анализ которых позволяет изучить характер напряженного состояния модели в каждой ее точке. После соответствующего пересчета данные исследования переносятся на натурный- объект. Обоснование правомерности такого переноса дано в теории упругости, где доказано, что при некоторых условиях, в пределах упругих деформаций, распределение напряжений в детали не зависит от упругих констант ее материала.  [c.229]

Ранее была отмечена особая чувствительность усталостной прочности титановых сплавов к характеру финишной поверхностной обработки.. Естественно, что многие исследования были направлены на разработку специальных методов поверхностного упрочнения титана, максимально повышающих его предел выносливости. Выявлен наиболее эффективный способ—применение различных видов ППД. Этот способ уже широко используют для многих металлов, а для титановых сплавов он оказался крайне необходимым и перспективным. По исследованиям в этом направлении в настоящее время постоянно публикуется большое число работ (главным образом в периодической литературе). Можно без преувеличения утверждать, что основные резервы повышения усталостной прочности титановых сплавов состоят именно в правильном выборе метода ППД и финишного сглаживания поверхности деталей, подвергающихся циклической нагрузке. Если для стали основная польза ППД заключается в создании сжимающих поверхностных напряжений, то для титановых сплавов, как уже показано, имеет не меньшее значение повышение прочности (за счет наклепа) и однородности механических свойств поверхностных слоев. Часто поверхностный наклеп титана необходим, чтобы снять неблагоприятный эффект предшествующей обработки, которую исключить из технологического процесса не всегда уда ется (например, шлифование или травление).  [c.196]


Одним из основных вопросов, решаемых при проведении малоцикловых натурных испытаний, является получение данных о напряженно-деформированном состоянии конструкции в зависимости от величины нагрузки и кинетики процесса с числом нагружений. Из известных экспериментальных методов исследования деформированного состояния для применения в натурных малоцикловых испытаниях практически единственно возможным оказывается малобазное тензометрирование. Использование специальных фольговых тензодатчиков с базой 1 мм позволяет измерять (в зонах концентрации) циклические упругопластические де-  [c.264]

При исследовании напряжений поляризационно-оптическим методом для изготовления моделей применяют специальные прозрачные оптически чувствительные материалы.  [c.81]

Для измерения разности хода и параметра изоклины, а также для наблюдения за общей картиной напряженного состояния модели используются специальные приборы — полярископы. Некоторые виды полярископов позволяют определять разность хода по методу сопоставления цветов и методу полос, другие—но методу компенсации. В последнем случае в полярископах в качестве дополнительного измерительного элемента используются компенсаторы. Кроме основных измерительных приборов для исследования напряжений поляризационно-оп-тическим методом необходимо различное вспомогательное оборудование, предназначенное для изготовления материалов, определения их оптико-механических свойств и нагружения моделей.  [c.98]

В механике в качестве основного объекта исследования внутренних напряжений и деформаций тела берется малый его объем такой, что практически он содержит очень много атомов и даже много зерен, но в математическом отношении он предполагается бесконечно малым. Допускается, что перемещения, напряжения и деформации являются непрерывными и дифференцируемыми функциями координат внутренних точек тела и времени. Предполагается, далее, что возникающие за счет внешних воздействий на тела внутренние напряжения в каждой точке зависят только от происходящей за счет внешних воздействий дефор мации в этой точке, от температуры и времени. Таким образом, наряду с понятием абсолютно твердого тела в механике возникает новое понятие материального континуума или непрерывной сплошной среды и, в частности, сплошного твердого деформируемого тела . Это понятие оказалось чрезвычайно плодотворным не только в теоретическом и расчетном отношении, поскольку позволило для исследования прочности привлечь мощный аппарат математического анализа, но и в экспериментальном, поскольку выявило, что для исследования прочности твердых тел имеют значение лишь механические свойства, т. е. связь между напряжениями, деформациями, временем и температурой, а не вся совокупность сложных взаимодействий, определяющих полностью физическое состояние реального твердого тела. Отсюда возникли специальные экспериментальные методы исследования механических свойств различных материалов. Возникла, и притом более ста лет тому назад, механика сплошных сред или континуумов и такие основные науки о прочности твердых тел, как сопротивление материалов, строительная механика, теория упругости и теория пластичности.  [c.12]

В связи с вопросами оценки несущей способности и устойчивости оснований и откосов необходимо упомянуть специальное направление исследований, связанное с разработкой приближенных методов. Основная идея этих методов, по-видимому, содержалась уже в работах Ш. Кулона, и ее мотивировка и реализация выглядят следующим образом. При исчерпании несущей способности грунтового массива потеря устойчивости осуществляется в результате смещения некоторой части массива по поверхности скольжения. Детальный механизм этого явления связан с таким развитием напряженно-деформированного состояния массива, при котором приближение к состоянию, когда теряется устойчивость, характеризуется резкой локализацией сдвиговых деформаций вблизи некоторой поверхности, по которой затем и происходит соскальзывание части массива. Естественно, для точного расчетного описания этого явления требуются, с одной стороны, достаточно совершенные модели среды,- допускающие детальное прослеживание развития процесса деформирования в допредельном и предельном состояниях, и, с другой стороны, соответствующие математические методы решения возникающих здесь существенно нелинейных задач. Ни тем, ни другим вплоть до недавнего времени исследователи не располагали. Теория предельного равновесия, как уже отмечалось, в принципе не в состоянии решить эту задачу.  [c.215]

Такие условия устанавливаются существующими стандартами на методы испытания электроизоляционных материалов. Однако для специальных электрофизических исследований приходится принимать еще большие предосторожности. Так, в ряде случаев следует выдерживать образец под напряжением в течение достаточно большого времени, чтобы установился сквозной ( остаточный ) ток при исследовании стекол, щелочно-галогенидных кристаллов при температурах ниже 100—150°С вполне надежные результаты удается получить только при измерениях в вакууме во избежание влияния на образец влаги (так, в вакууме проводились измерения, результаты которых представлены на рис. 1-23 и 1-44).  [c.73]

К группе специальных методов исследования коррозии относится ряд испытаний, выполняемых для определения влияния внешних факторов на процесс коррозии, таких как механические напряжения (в том числе и знакопеременные), давление, температура, скорость потока и размер взвешенных в нем частиц. К этой группе можно отнести испытания на межкристаллитную и транскристал-литную коррозию, а также испытания защитного действия органических покрытий. Для определения защитного действия покрытий можно применять уже описанные методы — гравиметрический и объемный, а также мето-  [c.86]


Если зоны максимальных напряжений заранее известны, применяют методы исследования напряжений в отдельных точках. Наибольшее распространение получил метод, основанный на использовании тензодатчикое электрического сопротивления. Применяют датчики из тонкой проволоки (константан, нихром и др-) и из медно-никелевой фольги с короткой (0,3—3 мм), средней (3—25 мм) и большой (свыше 25 мм) базой. Для регистрации гюка-заний тензодатчиков используют специальную аппаратуру, выбор которой определяется задачами и условиями измерения напряжений. Хорошо зарекомендовал себя также метод моделирования напряженно-деформированного состояния с использованием моделей из оргстекла. Простота изготовления таких моделей, высокая чувствительность их к нагрузкам вследствие малого модуля упругости материала модели, возможность воспроизведения самых сложных конструктивных элементов — все это делает данный метод эффективным при решении различных задач.  [c.60]

Расчет внутренних напряжений в покрытии по величине внутренних напряжений в подложке, определенных на свободной ее стороне или измеренных со стороны покрытия, производится на основании данных, полученных специальными методами. Обычно пользуются поляризационнооптическим или тензометрическим методами исследования напряжений, причем оптический метод проще, удобнее и дает более точные результаты.  [c.25]

Третьей характерной кривой является график зависимости между напряжением и деформацией для определенного момента времени. Ясно, что для любого момента времени этот график будет представлять собой прямую линию с постоянным углом наклона. Линейная зависимость напряжений от деформаций (В каждый момент времени есть следствие неявного предположения о линейности моделей, состоящих из пружин и цилиндров с поршнями. Эта линейная зависимость в общем случае очень важна при исследовании напряжений и деформаций поляризационно-оптическим методом, так как она позволяет распростра- нить результаты, полученные на моделях из вязкоупругого материала, на натуру из упругого материала. Большая часть вязкоупругих материалов обладает линейной зависимостью между напряжениями и деформациями в определенных пределах изменения напряжений и деформаций (или даже времени). Существуют и нелинейные вязкоупругие материалы, полезные в некоторых специальных задачах. Однако в большинстве случаев приходится выбирать материал с линейной зависимостью между напряжениями и деформациями и следить за тем, чтобы модель из оптически чувствительного материала не выходила в ходе испытания за пределы области линейности свойств материала. При фотографировании картины полос момент времени для всех исследуемых точек оказывается одним и тем же. Если используются дополнительные тарировочные образцы, то измерения на них необходимо проводить через тот же самый интервал времени после приложения нагрузки, что и при исследовании модели. Читатель, желающий подробнее ознакомиться с использованием расчетных моделей для анализа свойств вязкоупругих материалов, может обратиться к другим публикациям по данному вопросу, в частности к книге Алфрея [1] ).  [c.122]

Пятая глава, написанная специально для русского издания Ю.М. Тарнопольским, Ю.Ю. Перовым и В.А. Поляковым, содержит обзор и оценку инженерных методов анализа напряжений на свободной кромке. Приведены экспериментальные данные о жесткости исследованных слоистых пластиков, начале расслоения на кромке, предельной несущей способности стержней и закону изменения деформаций по толщине пакета в области свободной кромки. Детально исследованы эффект гибридизации и другие методы, повышающие сопротивление расслоению, такие как введение податливых слоев. Экспериментальные результаты качественно хорошо подтверждают предложенную модель. Это тем более важно, что модель не учитывает начальных напряжений, возникающих в процессе отвержЯения матрицы.  [c.8]

Сведения о напряженном состоянии конструкции получаются либо путем экспериментального исследования изделия или его модели (например, оптическим методом), либо путем расчета по методам сопротивления материалов или теории упругости. Степень надежности этих методов различна, и потому действительные напряжения могут более или менее значительно отличаться от расчетных. Чем точнее, т. е. чем ближе к действительности расчетный метод, тем меньший нужен специальный запас на напряженное состояние. Поэтому всякое уточнение расчета (проверенное опытом) позволяет снизить величину этого запаса. К таким уточнениям относится, например, учет коэффициента койцентрации напряжений. Неправильно было бы принимать одинаковую величину специального запаса при неучете и при учете концентрации. Во втором случае она может быть уменьшена.  [c.448]

Исследовались образцы полиэтилена (ПЭВП) и политетрафторэтилена (ПТФЭ-1). Опыты проводились на машине Цвик , снабженной специальными приспособлениями для осуществления разгрузки образцов. Метод исследования заключался в следующем образцы деформировались при различных значениях постоянной скорости деформации до определенного значения отношения напряжений а/СТо. одинакового для всех образцов здесь а —текущее напряжение Оо —напряжение при некоторой фиксированной деформации при температуре опыта. Затем производилась быстрая разгрузка образца и запись релаксации деформаций во времени с помощью двухкоординатного самописца. Подобные опыты были выполнены при различных температурах, причем отношение напряжений ст/оо поддерживалось практически постоянным.  [c.73]

Так как в качестве стандартного метода оценки коррозии высокопрочных сталей под напряжением принято ускоренное испытание в 20%-ной Н2504+30 г/л НаС1, то весьма важно было установить, в какой мере эти испытания отражают поведение в реально встречающихся средах. Специально проведенные исследования на шести различных плавках высокопрочных сталей показали, что, чем выше критические напряжения, полученные при ускоренных испытаниях, тем больше коррозионная стойкость стали в различных средах [84].  [c.96]


Смотреть страницы где упоминается термин Специальные методы исследования напряжений : [c.390]    [c.43]    [c.303]    [c.493]    [c.882]   
Смотреть главы в:

Лабораторный практикум по сопротивлению материалов  -> Специальные методы исследования напряжений

Руководство к лабораторным работам по сопротивлению материалов  -> Специальные методы исследования напряжений

Лабораторный практикум по сопротивлению материалов  -> Специальные методы исследования напряжений



ПОИСК



Исследование напряжений

Метод напряжений

Методы исследования

Методы специальные



© 2025 Mash-xxl.info Реклама на сайте