Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Циркуляция скорости. Подъемная сила. Теорема Жуковского

Теорема Н. Е. Жуковского о подъемной силе связывает подъемную силу крыла с величиной циркуляции скорости. Согласно этой теореме подъемная сила равна произведению скорости движения летательного аппарата, плотности воздуха и величине циркуляции скоростей. Подъемная сила составляет прямой угол с направлением скорости полета.  [c.52]


Устанавливаемая формулой (38,4) связь подъемной силы с циркуляцией скорости составляет содержание теоремы Н. Е. Жуковского (1906). К применению этой теоремы к хорошо обтекаемым крыльям мы вернемся еще в 46.  [c.220]

Эта формула позволила понять в рамках теории обтекания крыльев идеальной жидкостью механическую природу подъемной силы. Теорема Н. Е. Жуковского особенно существенна в связи с тем, что при непрерывном установившемся обтекании тел идеальной жидкостью с однозначным потенциалом скорости имеет место парадокс Даламбера, согласно которому полная сила, действующая со стороны жидкости на тело, равна нулю. Открытие наличия подъемной силы, возникающей за счет циркуляции, обусловливающей неоднозначность потенциала скорости, имело большое принципиальное значение.  [c.300]

Так разрешился парадокс Эйлера. Ведь парадоксом называется явление, при котором мы видим, что если я пускаю змей, то оп имеет подъемную силу, а <по теории> оп ее пе имеет. Николай Егорович разрешил этот парадокс тем, что показал, что движущееся крыло может иметь подъемную силу при наличии циркуляции вокруг крыла. Если же нет подъемной силы, то нет и циркуляции. Так что знаменитая теорема Жуковского говорит, что подъемная сила равняется произведению циркуляции на скорость потока жидкости.  [c.268]

Для определения поля скоростей, вызванных крылом, заменим последнее и сбегающую с него поверхность раздела системой вихрей. Подъемная сила всегда связана с циркуляцией, а именно, согласно теореме Жуковского, которая применима и здесь, подъемная сила на единицу длины равна  [c.283]

Теорема Жуковского, опубликованная им в 1906 г., сыграла важную роль в развитии теории крыла, которая явилась основой теории летательных аппаратов. Эта теорема получила также широкое применение в теории гребных винтов кораблей, теории лопастных гидравлических, паровых и газовых турбомашин. Ее значение определяется прежде всего тем, что она вскрывает физическую причину появления подъемной силы такой причиной являются вихри, мерой интенсивности которых служит циркуляция скорости. При этом несущественна причина, порождающая эти вихри. В рамках теории идеальной жидкости, циркуляция может быть порождена только вихрями, которые мы считаем существующими в потоке, однако не можем указать источник их появления (по крайней мере для однородной несжимаемой жидкости). Такие вихри, определяющие подъемную силу, Жуковский называл присоединенными. В реальной жидкости циркуляция порождается действием сил трения, которые развиваются и проявляются в пограничном слое, образующемся у поверхности тела (см. гл. 8 и 9). Таким образом, присоединенные вихри Жуковского являются теоретическим эквивалентом системы вихрей, возникающих в пограничном слое реальной жидкости. Теорема Жуковского указывает на то, что целесообразно изменяя форму профиля обтекаемого цилиндрического тела, т. е. изменяя интенсивность вихрей в пограничном слое, можно соответственно изменять подъемную силу.  [c.235]


Этой формулой выражается теорема Жуковского о подъемной силе, которая гласит, что при обтекании цилиндрического тела произвольного профиля плоским потенциальным потоком с циркуляцией на каждую единицу длины тела со стороны потока действует сила, равная произведению плотности жидкости, скорости потока в бесконечности и циркуляции по контуру, охватывающему тело.  [c.251]

Поскольку обтекание пластины циркуляционное, то согласно теореме Жуковского на пей возникает поперечная сила, равная р I о I Г. Величина циркуляции Г здесь не определена и в нашей теоретической схеме может быть выбрана произвольно. Однако очевидно, что только одно значение циркуляции может дать истинную величину силы Жуковского, совпадающую с опытной. С, А. Чаплыгиным и Н. Е. Жуковским сформулирован упоминавшийся выше постулат, позволяющий устранить неопределенность величины циркуляции, а значит и подъемной силы. Ими было обраш,ено внимание на то, что при обтекании тел с заостренно задней кромкой (в частности, при обтекании пластины), согласно теоретическому решению, в точке заострения скорость обращается в бесконечность, тогда как при реальном обтекании это физически невозможно. Устранить это несоответствие теоретической схемы опыту можно, выбрав определенное значение циркуляции.  [c.258]

В основе современной теории крыла лежит теорема Жуковского о подъемной силе. Исследуя обтекание тела невязкой жидкостью, Н. Е. Жуковский предложил искать источник силового воздействия на тело в образовании циркуляции скорости, обусловленной наличием вихря. Он получил формулу для определения подъемной силы при безотрывном обтекании произвольного контура несжимаемой жидкостью. М. В. К е л д ы ш и Ф. И. Ф р а н к л ь доказали, что формула Жуковского справедлива и для сжимаемого газа при дозвуковых скоростях течения.  [c.161]

Формулы (4.45), (4.47) и составляют содержание теоремы Жуковского с подъемной силе. В общем случае на одиночное тело, обтекаемое вязкой жидкостью, действуют как сила сопротивления (направленная вдоль скорости потока), так и подъемная сила (перпендикулярная скорости потока). В идеальной несжимаемой жидкости, как следует из теоремы Жуковского, сила сопротивления равна нулю , а подъемная сила возникает только при наличии циркуляции скорости по профилю.  [c.69]

Появляющаяся подъемная сила прямо пропорциональна скорости поступательного движения и величине циркуляции Г. Этот простой результат известен как теорема Кутта — Жуковского и применим не только к круглому цилиндру, но и к цилиндрам любой формы, включая несимметричные тела.  [c.411]

Первая из формул (83) выражает известную теорему Жуковского о подъемной силе(крыла в плоскопараллельном безвихревом потоке идеальной несжимаемой жидкости. Эта теорема была опубликована в 1906 г. в классическом мемуаре О присоединенных вихрях ), в котором Н. Е. Жуковский впервые установил вихревую природу сил, действующих со стороны потока на крыло, и указал на наличие простой зависимости между этой силой и циркуляцией скорости по контуру, охватывающему обтекаемое крыло.  [c.192]

При рассмотрении плоского обтекания цилиндрического крыла бесконечного размаха уже указывалось, что на самом деле нельзя полностью пренебрегать наличием в жидкости трения. За счет внутреннего трения, особенно сильно развивающегося в тонком пограничном слое, образуются мощные вихри, совокупность которых, по гениальной идее Жуковского, можег быть заменена одним присоединенным вихрем , поясняющим возникновение подъемной силы крыла. Этот присоединенный вихрь , в полном согласии с классической теоремой Гельмгольца ( 12 гл. I) об одинаковости интенсивности вихревой трубки вдоль всей ее длины, не может начинаться или заканчиваться в жидкости. Совпадая по направлению с осью крыла бесконечного размаха, присоединенный вихрь приходит из бесконечности и в бесконечность же уходит. Интенсивность присоединенного вихря одинакова вдоль размаха цилиндрического крыла, одинакова и циркуляция скорости по контуру, охватывающему любое сечение крыла, и подъемная сила единицы длины крыла.  [c.449]


Теорема Кутта —Жуковского ). Если неподвижный профиль крыла обтекается с циркуляцией К равномерным плоско-параллельным потоком воздуха со скоростью V в бесконечности, то на крыло действует подъемная сила, равная КяУ и направленная перпендикулярно скорости V. Направление вектора подъемной силы получается поворотом вектора V на прямой угол в сторону, противоположную направлению циркуляции.  [c.188]

Сила L перпендикулярна к скорости V и является подъемной силой, а сила D —силой сопротивления. Точность этих результатов тем лучше, чем больше радиус с( ры S. Они представляют собой обобщение теоремы Кутта — Жуковского для невязкой жидкости и формулы Филона ) для плоского движения вязкой жидкости. Здесь Г —векторная циркуляция по поверхности 2, обусловленная скоростью qt, а / — приток жидкости в вихревой след, обусловленный скоростью q4.  [c.560]

Теорема Жуковского объясняет подъемную силу возникновением циркуляции вокруг крыла. Определение циркуляции, в свою очередь, основано на физическом требовании, чтобы скорость в задней кромке профиля была конечна. В случае установившегося движения циркуляция, будучи определена, остается все время постоянной, т. е. не зависит от времени. Но каким образом она возникает и как она изменяется в процессе уста-  [c.325]

Связь величины подъемной силы с циркуляцией скорости была впервые установлена Н. Е. Жуковским, и полученная им теорема о подъемной силе называется теоремой Жуковского.  [c.302]

Одним из важных, ставшим теперь классическим, является раздел аэродинамики, изучающий обтекание профиля плоским потоком идеальной несжимаемой жидкости. Этот раздел имеет и первостепенное прикладное значение, являясь основой изучения дозвукового обтекания крыла и многих других вопросов гидро- и аэродинамики. Законы, характеризую--щие обтекание профиля идеальной несжимаемой жидкостью, были установлены в получивших всеобщее признание работах Н. Е. Жуковского и С, А, Чаплыгина. Сюда, прежде всего, относятся теорема Жуковского о подъемной силе, связавшая величину подъемной силы с циркуляцией скорости вокруг профиля, и условие Чаплыгина — Жуковского, дающее возможность зафиксировать величину циркуляции, исходя из предположения о единственной физически возможной схеме безотрывного обтекания  [c.85]

Циркуляция г и скорость набегающего потока по теореме Жуковского определяют подъемную силу крыла — главный вектор сил давления на крыло — она ортогональна направлению скорости набегающего потока и равна р  [c.134]

Таким образом, в отличие от потенциального течения, при наличии скачков уплотнения возникает сила сопротивлениях X (она имеет направление вектора скорости набегающего потока), пропорциональная интенсивности скачков и их протяженности. Что касается подъемной силы Y, то она формально выражается так же, как и в теореме Жуковского, однако отличается тем, что циркуляция Гоо вычисляется на бесконечном удалении от профиля. В потенциальном потоке Гоо и циркуляция скорости Го по контуру профиля одинаковы, но в вихревом течении они различны. Таким образом, волновая компонента подъемной силы равна —p w Too — Го).  [c.189]

ИНДУКТИВНОЕ СОПРОТИВЛЕНИЕ, сопротивление, к-рое получается у движущегося в жидкости тела при наличии циркуляции, обусловливающей по теореме Жуковского нек-рую подъемную силу от определенной системы вихрей, образовавшихся в жидкости при двишении данного тела (см. Вихревая теория]. Эти вихри образуются следующим образом. Предположим, что нек-рое крылообразное тело движется в воздухе у него сила сопротивления получается как за счет трения, так и за счет придания нек-рой массе воздуха определенных скоростей. При наличии у этого крыла подъемной силы, т. е. силы, перпендикулярной направлению движения потока, струя над крылом сужается, а под крылом расширяется, за счет чего соответственно  [c.55]

Теорема Н. Е. Жуковского. При обтекании прямолинейной плоской решетки несжимаемой идеальной жидкостью на профиль действует только сила Жуковского (подъемная сила), направленная по нормали к вектору средней геометрической скорости. Для определения направления силы Жуковского следует вектор средней геометрической скорости повернуть на 90° в сторону, противоположную направлению циркуляции скорости.  [c.362]

Теорема Жуковского имеет огромное теоретическое и практическое значение. Она указала конструкторам от чего зависит подъемная сила профиля в решетке и способы ее увеличения. Для увеличения подъемной силы при заданной средней геометрической плотности тока необходимо увеличивать циркуляцию скорости Г т. е. при заданном шаге — закрутку потока = — 2и-  [c.363]

Формула (3-40) выражает теорему Н. Е. Жуковского, являющуюся основной теоремой аэродинамики. Теорему Жуковского можно сформулировать так при обтекании тела плоскопараллельным безграничным потоком идеальной сжимаемой жидкости на тело единичного размаха действует сила, равная произведению циркуляции скорости Г на скорость и на плотность Роо невозмущенного потока. Направление этой силы нормально к направлению скорости невозмущенного потока с . При этом, как следует из вывода, если циркуляция скорости, вычисленная при обходе по часовой стрелке, окажется положительной, то и будет положительной. Подъемную силу часто называют силой Жуков-  [c.97]


Это соотношение составляет содержание теоремы Жуковского подъемная сила крыла самолета равна произведению плотности, циркуляции скорости и скорости набегаюо его потока. Направление этой силы определяется поворотом скорости потока в бесконечности на прямой угол против направления циркуляции.  [c.271]

Теорема Жуковского, опубликованная им в 1906 г., сыграла выдающуюся роль в развитии теории крыла, которая, в свою очередь, явилась основой теории летательных аппаратов. Эта теорема получила также широкое применение в теории гребных винтов кораблей, теории лопастных гидравлических, паровых и газовых турбомашин. Ее значение определяется прежде всего тем, что она вскрывает физическую причину появления подъемной силы такой причиной являются вихри, мерой интенсивности которых служит циркуляция скорости. При этом несущественна причина, порождающая эти вихри. В рамках теории идеальной жидкости циркуляция может быть порождена только вихрями, которые мы а priori мыслим существующими в потоке, однако не можем указать источник их появления (по крайней мере для несжимаемой жидкости). Такие вихри, определяющие величину подъемной силы, Жуковский называл присоединенными. В реальной жидкости циркуляция порождается действием сил трения, которые развиваются и проявляются в пограничном слое, прилегающем  [c.251]

В работах О присоединенных вихрях (1906, опубликовано в 1937 г.) и Падение в воздухе легких продолговатых тел, вращающихс [ около своей продольной оси (1906) Жуковский установил, что подъемная сила возникает в результате обтекания потоком неподвижного присоединенного вихря или системы вихрей, которыми можно заменить тело, находящееся в потоке жидкости. Основываясь на этом, он доказал знаменитую теорему, позволяющую вычислить величину подъемной силы. Но формуле Жуковского, величина подъемной силы равняется произведению плотности воздуха, циркуляции скорости потока вокруг обтекаемого тела и скорости движения тела. Правильность теоремы была подтверждена на основе экспериментов с вращающимися в потоке воздуха продолговатыми пластинками, поставленных но идее Жуковского в 1905—1906 гг. в Аэродинамической лаборатории Кучинского института.  [c.273]

Последний из разобранных примеров может служ пть доказательством теоремы Жуковского сила давления потока циркуляцией — подъемная сила — равна произведению плотности жидкости р на ее скорость в бесконечности V o и на величину циркуляции Г направление подъемной силы перпендикулярно вектору скорости потока и вектору циркуляции и обратно направлению циркуляции .  [c.133]

Важным достижением в этом направлении явилась работа М. В. Келдыша и Ф. И. Франкля (1932), в которой была рассмотрена внешняя задача Неймана для нелинейных эллиптических уравнений с приложением к теории крыла. Используя метод последовательных приближений, подобный методу Рейли — Янцена, авторы доказали теорему существования решения задачи, дали доказательство справедливости теоремы Жуковского о подъемной силе для случая сжимаемого газа в той же формулировке, что и для несжимаемой жидкости (подъемная сила Р — p Fo F, где рос, Voo величины плотности и скорости в набегающем потоке, Г — циркуляция сопротивление равно нулю).  [c.98]

Несущим профилем крыла называется профиль, обладающий подъемной силой. По теореме Жуковского крыло обладает подъемной силой, если циркуляция скорости на его контуре отлична от нуля. В свою очередь, существование ненулевой циркуляции связано с определенной структурой потока в окрестности бесконечно удаленной точки, задаваемой его асимптотикой. Впервые строгие асимптотики для потенциала скорости и его производных были найдены в [45] (для случая обтекания профиля потоком достаточно малой скорости). Позже асимптотики для потенциала и для самой скорости были уточнены [138, 148, 141]. Для несущего профиля они определяются формулами [19  [c.135]

Подъемная сила. Потенциальный поток с циркуляцией около погруженного в него тела можно представить как сумму потенциального потока без циркуляции (рис. XIX. 31,а) и циркуляционного потока (рис. XIX. 31,6). Без осо бых расчетов ясно, что при наложении циркуляционного потока на обычный потенциальный поток окорость последнего над телом узелнчивается (скорости обоих потоков направлены в одну сторону), а под телом, нао-борот, уменьшается. Потому в соответствии с уравнением Д. Бернулли можно утверждать, что давление над телом уменьщается, а под телом увеличивается. Следовательно, возникает сила, действующая на тело вверх,—по Н. Е. Жуковскому, подъемная сила. В 1904 г. П. Е. Жуковский одновременно с Куттом, но независимо от него, доказал теорему о подъемно й силе, которую обычно называют теоремой Жуковского —Кутта  [c.422]


Смотреть страницы где упоминается термин Циркуляция скорости. Подъемная сила. Теорема Жуковского : [c.287]    [c.50]    [c.412]    [c.29]    [c.550]   
Смотреть главы в:

Гидравлика и аэродинамика  -> Циркуляция скорости. Подъемная сила. Теорема Жуковского



ПОИСК



V подъемная

Жуковский

Жуковского теорема

Жуковского теорема о подъемной силе

От скорости сила

Подъемная сила

Подъемная циркуляция

Сила Жуковского

Сила подъемная Жуковского

Теорема Жуковского о подъемной сил

Теорема циркуляции

Циркуляция

Циркуляция н подъемная сила

Циркуляция скорости



© 2025 Mash-xxl.info Реклама на сайте