Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема Жуковского о подъемной силе крыл

ТЕОРЕМА ЖУКОВСКОГО о ПОДЪЕМНОЙ СИЛЕ КРЫЛА 277  [c.277]

Теорема Жуковского о подъемной силе крыла. Зависимость подъемной силы от угла атаки. Коэффициент подъемной силы  [c.277]

Начнем с доказательства теоремы Жуковского о подъемной силе крыла в плоскопараллельном потоке. Предлагаемое ниже векторное доказательство теоремы Жуковского только по форме отличается от классического доказательства этой теоремы, данной ее автором. Применим теорему количеств движения в форме Эйлера [ 23, формула (38)] к объему жидкости, заключенному между поверхностью обтекаемого контура С (рис. 89) и проведенной в удалении от контура С окружностью круга Q с центром в точке О и радиусом г. Пренебрегая объемными силами, будем иметь, заменяя в формуле (38) 23,  [c.278]


ТЕОРЕМА ЖУКОВСКОГО о подъемной силе крыла 279  [c.279]

В основе современной теории крыла лежит теорема Жуковского о подъемной силе. Исследуя обтекание тела невязкой жидкостью, Н. Е. Жуковский предложил искать источник силового воздействия на тело в образовании циркуляции скорости, обусловленной наличием вихря. Он получил формулу для определения подъемной силы при безотрывном обтекании произвольного контура несжимаемой жидкостью. М. В. К е л д ы ш и Ф. И. Ф р а н к л ь доказали, что формула Жуковского справедлива и для сжимаемого газа при дозвуковых скоростях течения.  [c.161]

Теорема Жуковского о подъемной силе имела фундаментальное значение в теории крыла и винта.  [c.287]

Первая из формул (83) выражает известную теорему Жуковского о подъемной силе(крыла в плоскопараллельном безвихревом потоке идеальной несжимаемой жидкости. Эта теорема была опубликована в 1906 г. в классическом мемуаре О присоединенных вихрях ), в котором Н. Е. Жуковский впервые установил вихревую природу сил, действующих со стороны потока на крыло, и указал на наличие простой зависимости между этой силой и циркуляцией скорости по контуру, охватывающему обтекаемое крыло.  [c.192]

Сила А называется поперечной, или подъемной силой. Соотношение, выражаемое уравнением (56), называется теоремой Жуковского о подъемной силе . Эта теорема может быть доказана также другим путем. Так, например, Н. Е. Жуковский вывел ее, применив теорему о количестве движения к контрольной поверхности в виде круглого цилиндра очень большого радиуса и с осью, совпадающей с осью крыла. При этом одна половина подъемной силы А получается вследствие переноса количества движения, а другая половина как результирующая сил давления. Теорема Жуковского важна прежде всего потому, что она дает возможность вычислить по заданной подъемной силе соответствующую циркуляцию, определяющую напряженность вихря позади крыла.  [c.124]

Одним из важных, ставшим теперь классическим, является раздел аэродинамики, изучающий обтекание профиля плоским потоком идеальной несжимаемой жидкости. Этот раздел имеет и первостепенное прикладное значение, являясь основой изучения дозвукового обтекания крыла и многих других вопросов гидро- и аэродинамики. Законы, характеризую--щие обтекание профиля идеальной несжимаемой жидкостью, были установлены в получивших всеобщее признание работах Н. Е. Жуковского и С, А, Чаплыгина. Сюда, прежде всего, относятся теорема Жуковского о подъемной силе, связавшая величину подъемной силы с циркуляцией скорости вокруг профиля, и условие Чаплыгина — Жуковского, дающее возможность зафиксировать величину циркуляции, исходя из предположения о единственной физически возможной схеме безотрывного обтекания  [c.85]


Формула (1.2) выражает теорему Н. Е. Жуковского о подъемной силе крыла, полученную в 1906 г. и распространенную им же в 1914 г. (путем применения теоремы о количестве движения) на случай решетки.  [c.105]

Эга формула является математическим выражением известной теоремы Н. Е. Жуковского о подъемной силе профиля в решетке, доказанной им в 1912 г. Аналогичное выражение для одиночного крыла было получено Н. Е. Жуковским в 1906 г.  [c.14]

Исследования Н. Е. Жуковского о подъемной силе составляют основу современной аэродинамики, его теорема о подъемной силе имеет фундаментальное значение для теории крыла.  [c.273]

Этот результат представляет собой частный случай общей теоремы Н. Е. Жуковского о подъемной силе, доказанной им в 1904 г. для цилиндра с произвольной формой поперечного сечения. Мы изучим эту теорему в дальнейшем она является основной при определении подъемной силы профиля крыла.  [c.196]

Теорема Н. Е. Жуковского о подъемной силе связывает подъемную силу крыла с величиной циркуляции скорости. Согласно этой теореме подъемная сила равна произведению скорости движения летательного аппарата, плотности воздуха и величине циркуляции скоростей. Подъемная сила составляет прямой угол с направлением скорости полета.  [c.52]

Задача о вычислении подъемной силы крыла сводится по теореме Жуковского к задаче о вычислении циркуляции Г. Эта задача может быть решена в общем виде для хорощо обтекаемого  [c.266]

Русские ученые внесли существенный вклад в дело развития теории газотурбинных установок. Вихревая теория несущего крыла аэроплана, в частности теорема о подъемной силе, закон постоянства циркуляции по радиусу осевой лопаточной машины, разработанные Н. Е. Жуковским (воздушный винт НЕЖ), послужили в дальнейшем фундаментом, на котором создавалась теория профилирования лопаток осевых компрессоров и лопаток газовых турбин. Многоступенчатый осевой компрессор для сжатия воздуха был опубликован впервые в отечественной литературе К. Э. Циолковским в 1930 г.  [c.100]

Первый вывод, который следует сделать из теоремы Жуковского, заключается в отсутствии составляющей силы, направленной вдоль движения жидкости, или, что все равно, направления движения тела по отношению к жидкости, т. е. отсутствии силы сопротивления. Этот важный факт составляет содержание парадокса Даламбера, о котором была речь в историческом очерке, помещенном во вводной части курса. Теорема Жуковского подтверждает парадокс Даламбера для любого плоского безвихревого движения идеальной жидкости как при наличии присоединенных вихрей , так и при отсутствии их. Единственной силой, действующей на обтекаемый профиль, оказывается поперечная движению тела сила, которая может быть названа подъемной или поддерживающей силой, так как именно эга сила обеспечивает подъем аэроплана в воздух, поддерживает его крыло при горизонтальном полете.  [c.282]

Последняя формула выражает собой частный случай фундаментальной теоремы Н. Е. Жуковского о подъемной силе крыла в применении к об-X теканию цилиндра. Эта формула справедлива для безотрывного обтекания любого контура.  [c.510]

В этой работе Н. Е. Жуковский дал строгое математическое исследование явления гидравлического удара, возникающего при быстром закрытии задвижки в водопроводной трубе, и вывел формулу для ударного давления, учитывающую как упругие свойства воды и стенок трубы, так и скорость движения воды в трубе. Эта работа, переведенная на многие иностранные языки, доставила Жуковскому мировую известность. Но все же наиболее важные его открытия относятся к области аэродиналшки. Его глубокие идеи в этой области являются до сих пор руководящими. Знаменитая теорема Жуковского о подъемной силе служит основой современной теории крыла самолета.  [c.28]


Важным достижением в этом направлении явилась работа М. В. Келдыша и Ф. И. Франкля (1932), в которой была рассмотрена внешняя задача Неймана для нелинейных эллиптических уравнений с приложением к теории крыла. Используя метод последовательных приближений, подобный методу Рейли — Янцена, авторы доказали теорему существования решения задачи, дали доказательство справедливости теоремы Жуковского о подъемной силе для случая сжимаемого газа в той же формулировке, что и для несжимаемой жидкости (подъемная сила Р — p Fo F, где рос, Voo величины плотности и скорости в набегающем потоке, Г — циркуляция сопротивление равно нулю).  [c.98]

Первый метод расчета лопастей поворотнолопастной турбины, основанный на гипотезе цилиндрических сечений, был создан на основе развиваюш,ейся прикладной аэродинамики и заключался в использовании для определения возникаюш,их на лопастях сил теоремы Н. Е. Жуковского о подъемной силе на крыле. Этот метод, названный методом подъемных сил, был использован Н. Е. Жуковским и его учениками еще в 1910—1914 гг. для расчета лопастей гребных винтов, винтов самолетов и крыльев ветряков. Дальнейшее развитие метод подъемных сил получил в работах Г. Ф. Проскуры. Расчет лопастей по этому методу сводился к подбору из атласа для каждого цилиндрического сечения аэродинамического профиля, который по своим характеристикам (коэффициенты подъемной силы Су и профильного сопротивления J, найденным путем продувок в трубе, удовлетворяет заданным условиям.  [c.167]

Теорию крыла конечного размаха позволило создать использование основополагающей теоремы Н. Е. Жуковского о связи подъемной силы с циркуляцией и модели течения с присоединенным вихрем, так что эта теория является логическим продолжением и развитием идей, составляющих фундамент теории крыла бесконечного размаха, В 1910 г. С. А. Чаплыгин в докладе на тему Результаты теоретических исследований о, движении аэропланов сформулировал общие представления о вихревой системе крыла конечного размаха. В 1913 и 1914 гг. им были получены первые формулы для подъемной силы и индуктивного сопротивления. Они были доложены на третьем воздухоплавательном съезде в Петербурге. В дальнейшем основное распространение получила теория несущей линии, предложенная в Германии Л. Прандтлем для крыльев большого относительного удлинения. В рамках этой схемь было получено интегро-дифференциальное уравнение, связывающее изменение циркуляции и индуктивный скос потока. Задача свелась к отысканию различных приближенных методов его решения. В работе Б. Н. Юрьева (1926) был применен геометрический прием, в котором использовалось предположение о том, что распределение циркуляции близко к эллиптическому и что отклонения от этого распределения повторяют форму крыла в плане. Аналитические методы, применявшиеся на начальном этапе развития теории для получения приближенных решений, состояли в требовании удовлетворения основному уравнению в ограниченном числе точек по размаху. Так, в методе тригонометрических разложений В. В. Голубев (1931) заменил бесконечный тригонометрический ряд тригонометрическим многочленом, сведя бесконечную систему уравнений к конечной системе, в которой число неизвестных соответствует числу членов разложения циркуляции и числу точек на крыле. С целью более точного учета формы крыла в плане при ограниченном числе решаемых алгебраических уравнений Я. М. Серебрийский (1937) предложил для решения интегро-дифференциального уравнения использовать способ наименьших квадратов.  [c.92]


Смотреть страницы где упоминается термин Теорема Жуковского о подъемной силе крыл : [c.32]    [c.550]    [c.400]   
Механика сплошной среды. Т.2 (1970) -- [ c.85 , c.300 ]



ПОИСК



V подъемная

Жуковский

Жуковского теорема

Жуковского теорема о подъемной силе

Крылов

Подъемная сила

Подъемная сила крыла

Сила Жуковского

Сила подъемная Жуковского

Теорема Жуковского о подъемной сил

Теорема Жуковского о подъемной силе крыла. Зависимость подъемной силы от угла атаки. Коэффициент подъемной силы



© 2025 Mash-xxl.info Реклама на сайте