Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тугоплавкие вольфрама

Порошковая металлургия дает возможность изготовлять изделия сложной формы с точными размерами, не прибегая к плавлению тугоплавкого металла и к обработке резанием. Для получения таких изделий тонкий спрессованный порошок металла спекается в сплошную массу при значительно более низкой температуре, чем та, которая нужна для его расплавления и отливки. Так, заготовка для проволоки из чрезвычайно тугоплавкого вольфрама для нитей электрических ламп получается только путем порошковой металлургии.  [c.221]


Вследствие тугоплавкости и большой механической прочности при повышенных температурах, вольфрам может работать при высокой температуре накала (более 2000° С), но лишь в глубоком вакууме или в атмосфере инертного газа (азот, аргон и т. п.), так как уже при нагреве до температуры в несколько сот градусов в присутствии кислорода он сильно окисляется (см. рис. 143). Благодаря высокому ар вольфрам иногда используют для бареттеров, которые по сравнению с железными, из-за тугоплавкости вольфрама, обладают повышенной способностью выносить значительные перегрузки током. Вольфрам применяют также для изготовления контактов.  [c.268]

Благодаря высокому р вольфрам иногда используют для бареттеров. Вольфрамовые бареттеры из-за тугоплавкости вольфрама  [c.302]

Неплавящиеся электродные стержни. Неплавящиеся электродные стержни изготовляют из чистого вольфрама, вольфрама с активирующими присадками окислов тория, лантана и иттрия, электротехнического угля и синтетического графита. Наиболее широко используют стержни из вольфрама и вольфрама с активирующими присадками, что обусловлено тугоплавкостью вольфрама (температура плавления 4500° С, температура кипения 5900° С), его высокой электропроводностью и теплопроводностью.  [c.293]

АП Легкость плавки и отливки в графитовых тиглях Изготовление отливок без раковин н с малым содержанием газов, а также соединение заливкой деталей из тугоплавких вольфрама и молибдена  [c.265]

Процесс запуска контейнера с радиоактивными отходами будет выглядеть следующим образом. Отработавшие на АЭС стержни привезут на стартовый комплекс и направят в пункт переработки. Там отходы перегрузят из транспортных контейнеров в экранированные капсулы, представляющие собой части орбитального снаряда. Устройство такого снаряда, изготовленного из тугоплавкого вольфрама, зависит от назначения и вида полезной нагрузки, но в любом случае корпус должен обладать минимальным аэродинамическим сопротивлением, для движения по направляющему рельсу ствола потребуются сбрасываемые после выстрела башмаки, а для стабилизации при полете в атмосфере — стабилизаторы.  [c.718]

В сварочных установках катоды обычно изготовляют из тугоплавких металлов (тантала, вольфрама) или из гексаборида лаи-  [c.159]

Температура плавления — особенно важная константа свойств металла. Она колеблется для различных металлов в весьма широких пределах — от минус 38,9 С, для ртути — самого легкоплавкого металла, находящегося при комнатной температуре в жидком состоянии, до 3410°С для самого тугоплавкого металла — вольфрама.  [c.42]


Ниобий и тантал обычно легируют в больших количествах молибденом, титаном, вольфрамом и другими преимущественно тугоплавкими металлами. Молибден легируют вольфрамом и в небольших количествах титаном и цирконием, которые являются более сильными карбидообразователями, чем молибден (вольфрам), и образуют вторичную карбидную фазу с малым количеством вводимого углерода (сотые доли процента). Эта фаза при выделении сильно упрочняет сплав.  [c.529]

Дуги с неплавящимся (тугоплавким) катодом. Если катод сварочной дуги выполнен из материала с высокими температурами плавления и кипения (для вольфрама 7 = 3650 К, = 5645...6000 К для угля Т возг = 4470 К), то он может быть нагрет до столь высокой температуры, при которой основная часть катодного тока обеспечивается термоэлектронной эмиссией. Учитывая, что торированный W-катод представляет собой пленочный катод, а примеси из столба дуги (если изделие, например, алюминиевый сплав) могут также снизить работу выхода, то расчетные значения плотности тока могут быть такими, как в приведенном ниже примере (цифры для простоты расчета взяты округленно).  [c.71]

Проблемой получения тугоплавких металлов и сплавов с монокристаллической структурой занимаются ученые всего мира более 30 лет. Первые монокристаллы тугоплавких металлов удалось получить в 1960 - 1965 гг. в Институте металлургии АН СССР им. А.А. Байкова, где были выращены монокристаллы всех тугоплавких металлов (вольфрама, молибдена, рения, тантала, ниобия, ванадия и др.) путем вакуумной электронно-лучевой ионной плавки.  [c.29]

Из диаграммы состояния Fe - W видно, что с железом вольфрам образует эвтектику при 33%W, температура плавления ее 1540°С (см. рис. 22). С повышением концентрации вольфрама до 50% температура плавления ферровольфрама медленно повышается до 1640 С, а при большей концентрации тугоплавкость сплава резко возрастает. Стандартный сплав с содержанием вольфрама более 70% имеет температуру плавления выше 2600°С такой сплав в жидком состоянии не заливается.  [c.95]

Для выплавки тугоплавких металлов (титана, хрома, циркония, ниобия, молибдена, вольфрама и рения) традиционные огнеупорные материалы (динас, магнезит, шамот, хромомагнезит) непригодны, так как они обладают недостаточной огнеупорностью (1300 - 1600°С), а температура плавления титанового сплава составляет более 2000°С. Поэтому все тугоплавкие технически чистые металлы выплавляют в специальных медных водоохлаждаемых тиглях-кристаллизаторах.  [c.302]

Разработанные в 1950 г. термодинамические направления О.А. Есиным и П.В. Гельдом, возникающие в жидких расплавах, характеризуют действием ионной теории металлов и расплавов. Их взаимосвязь определяется тепловой энергией АН и состоянием валентных электронов. Высшая валентность у элементов IV - VI периодов нарастают с 4 для хрома до 6 для вольфрама. Электронное строение и кристаллические структуры тугоплавких металлов приведены в табл. 106. Максимальные значения термодинамических показателей (Г,ц,, ДЯ, S, d) имеют тугоплавкие металлы VI группы (Сг, Мо, W).  [c.414]

Аналогичным методом удается посчитать внедренные атомы и дислокации. Ограничениями метода являются трудности получения закруглений очень малого радиуса кривизны и ряд других особенностей, сводящих область применения метода почти исключительно к исследованию тугоплавких металлов (молибдена, вольфрама, платины, иридия и т.д.).  [c.95]

К ним относятся материалы, состоящие из высокотвердых и тугоплавких карбидов вольфрама, титана, тантала, соединенных металлической связкой.  [c.110]

Таким образом, вероятность локального расплавления наблюдается у меди и цинка, поскольку время действия термического пика превышает (на 1—2 порядка) время оседлой жизни атомов, по этим же причинам у тугоплавких металлов (молибдена и вольфрама) расплавления не произойдет.  [c.40]

Для получения материалов металлокерамическим способом применяют металлы, не образующие твердых растворов. При выборе компонентов для металлокерамических контактов исходят из следующих основных условий один из них должен обладать хорошей проводимостью, второй должен быть механически прочным и более тугоплавким, чем первый, причем допустима пониженная проводимость оба компонента при возможной рабочей температуре контактов не должны сплавляться между собой. Металлокерамические контакты имеют по сравнению с обычными металлическими преимущества, заключающиеся в большей стойкости к оплавлению, привариванию и износу. Например, при постоянном и переменно 1 токах 0,5—4 А и напряжениях от 2 до 100 В лучшие результаты показали металлокерамические контакты из серебра и никеля и серебра и вольфрама, чем из серебра и его сплавов.  [c.268]


В качестве контактных материалов для слаботочных разрывных контактов помимо чистых тугоплавких металлов (вольфрама, молибдена) применяются благородные металлы (платина, золото, серебро), а также различные сплавы на их основе (золото—серебро, платина—рутений, платина—родий) металлокерамические композиции (например, Ag— dO).  [c.130]

Способы сварки. Существует несколько наиболее распространенных методов сварки электродуговая, электрошлаковая, контактная и газовая. В последнее время разработаны способы сварки редких и тугоплавких металлов (молибдена, вольфрама, тантала, нио-  [c.399]

Температура плавления. Как правило, тугоплавкие металлы менее пластичны при 20 °С, чем легкоплавкие, потому, что первые находятся при меньших гомологических температурах. По границам зерен обычно находятся легкоплавкие элементы таких элементов у калия мало, а у вольфрама все элементы имеют меньшую точку плавления. Калий высокопластичен, а вольфрам — лишь при тщательной очистке от примесей.  [c.199]

Металлокерамическими твердыми сплавами называются сплавы на основе тугоплавких твердых карбидов, главным образом карбидов вольфрама, титана и тантала, с добавками кобальта (иногда никеля) в качестве цементирующего металла.  [c.533]

В соответствии с особенностями электронного строения переходных металлов [9, 2941 среди тугоплавких металлов с ОЦК-решеткой металлы VIA группы (Сг, Мо, W) характеризуются высокими значениями у. В то же время металлы VA группы (V, Nb, Та) обладают существенно меньшими значениями энергии дефекта упаковки. Они сохраняют пластичность до более низких температур, а возникающая при деформации дислокационная субструктура у них менее четко сформирована, чем у молибдена и вольфрама. Железо занимает промежуточное положение между молибденом и ванадием [40].  [c.122]

Рений серебристобелый металл, он стоек на воздухе (лишь слегка тускнеет). Атомный вес 186,31 плотность 21,0 г/см температура плавления 3170°С, т. е. лишь немного ниже, чем у наиболее тугоплавкого вольфрама (3410 °С). Рений тяжелый, твердый и в то же время достаточно пластичный металл.  [c.314]

Наряду со свойствами аргона высокая тепловая мощность дуги и широкий диапазон плотностей тока обеспечиваются применением в качестве электрода-катода тугоплавкого вольфрама, преимущественно торированно-го, который, будучи нагретым до высоких температур без значительного испарения, расплавления и деформаций, дает возможность получать необходимый для разряда ток.  [c.180]

К методам порошковой металлургии возвратились лишь в конце XIX и начале XX столетий, когда понадобилось готовить из тугоплавкого вольфрама нити для электрических ламп, меднографитовые щетки для электрических машин, изготовить которые обычными металлургическими методами не представлялось возможным.  [c.115]

Из всех тугоплавких металлов, применяемых в производстве электровакуумных приборов, особое место занимает вольфрам. Обычно он используется в качестве источника электронов в мощных лампах из него делают антикатоды рентгеновских трубок и нити накала для подогревных катодов больщинства электронных ламп. Кроме того, он применяется в качестве источника света во всех лампах накаливания. В последнем случае основное достоинс гво вольфрама—высокая температура плавления сочетается с механической прочностью его при повыщенных температурах. С другой стороны, чрезвычайная тугоплавкость вольфрама вызывает затруднения при производстве различных деталей, если они должны иметь различную форму. Не существует ка-ких-либо материалов, позволяющих изготовлять формы для плавки вольфрама. Приходится обычно применяемую плавку металлов в формах заменять техникой порошковой металлургии. Процесс производства. металлического вольфрама заключается в прессовании вольфрамового порошка под высоким давлением и предварительном спекании пористых брусков в водородной печи при 1 250° С. Последующее окончательное спекание осуществляется накаливанием бруска в атмосфере водорода до температур, близких к температуре плавления, путем пропускания через брусок тока порядка нескольких тысяч ампер. Рост зерна, начинающийся примерно при 1 000° С, приводит к образованию крупнокристаллической структуры, сопровождаемому линейной усадкой бруска примерно на 17%. После этой обработки брусок становится вполне твердым, но еще очень хрупким. Пластичным брусок оказывается после ковки, производимой при повышенной температуре на специальных ковочных машинах, что позволяет в несколько проходов обрабатывать брусок со всех сторон молотками, уменьшая постепенно его диаметр. Первоначально крупные кристаллы во время ковки удлиняются вдоль оси прутка, что ведет к образованию волокнистой структуры проволоки, легко обнаруживаемой при изломе и обеспечивающей гибкость прутка. При увеличении температуры до значений, вызывающих  [c.167]

Прочно соединить разнородные металлы, например легкоплавкий алюминий с тугоплавким вольфрамом, 1юзволяет ультразвук. Ультразвуковая сварка (УЗ-сварка)—разновидность холодной сварки трением. Ультразвук — механические колебания высокой частоты — возбул<дается в поверхностных слоях свариваемых деталей контактом со специальным магнитострик-ционным преобразователем. Ультразвук обеспечивает интенсивную местную деформацию и сближение поверхностей до проявления больших межмолекулярных сил при нагреве контакта до температуры не более 0,5Гпл в течение долей секунды. В таких разнородных парах, как алюминий — титан и др., при обычных видах сварки образуются хрупкие промежуточные соединения, при УЗ-сварке их нет.  [c.236]

В результате рассмотрения взаимодействия разных элементов с тугоплавкими металлами и прямые исследования по изучению влияния разных элементов (Е. М. Савицкий, Н. Н. Моргунова) позволяют сформулировать некоторые иоложения 1) легировать тугоплавкие металлы в количестве до нескольких процентов можно лишь тугоплавкими, причем для металлов VA группы (ванадий, ниобий, тантал) возможно более глубокое легирование, чем для металлов VIA группы (хрома, молибдена, вольфрама) 2) кислород является более вредным элементом, чем углерод, поэтому последний вводят в небольшом количестве (до 0,05—0,1%), для раскисления н жесткого легирования.  [c.524]


Порог хладноломкости тугоплавких металлов в рекристаллизованном состоянии, как правило, шачительно выше, чем в деформированном. Трудна- TII при сварке молибдена и вольфрама связаны именно с этим обстоятельством образующаяся при сварке зона литого и рекристаллизованного ме-  [c.533]

Наиболее перспективными сплавами для работы в интервале 1000—1400° С являются, по-видимому, сплавы на основе молибдена и ниобия, а для работы при более высоких температурах — сплавы тантала и вольфрама. При температурах выше 600" С тугоплавкие металлы, за исключением хрома и некоторых металлов платиновой группы, интенсивно окисляются (рис. 77) и охруп-чиваются растворяющимся кислородом.  [c.117]

Металлопористый вольфрамово-бариевый термокатод — пористая вольфрамовая губка, внешняя поверхность которой покрыта пленкой бария, снижающей работу выхода и обеспечивающей получение большого тока ТЭ. В процессе работы пленка бария разрушается вследствие ионной бомбардировки и под воздействием газов, выделяющихся из деталей приборов. Возобновление пленки происходит вследствие поступления бария из вольфрамовой губки при термическом разложении содержащегося в ней активного вещества. Существует несколько типов металлопаристых термокатодов камерные, или L-катоды — состоят из камеры, заполненной активным веществом — карбонатом бария-стронция — и закрытой стенкой-губкой, наружная сторона которой является эмиттирующей поверхностью пропитанные — пористая губка из вольфрама, рения или молибдена, поры которой заполнены активным веществом — алюминатом или вольфраматом бария-кальция и прессованные. Последние изготовляются в виде таблеток или керамических трубок, путем спрессовывания смеси из порошков оксида иттрия или оксида тория и порошков тугоплавких металлов (вольфрам, молибден, тантал). Катоды этого типа так же, как и оксидпо-ториевый, работают при температурах 1700—1800° С и предназначены для использования в СВЧ-приборах, главным образом в магнетронах.  [c.571]

Решаю1цая роль в изменении структурного состояния твердых сплавов при воздействии лазера 1>тводится термическим явлениям, которые стимулируют диффузионные процессы, насыщение вольфрамом кобальтовой связки, а также изменение размера карбидов. Размер зерен карбидной фазы при лазерном облучении может как уменьшаться, так и увеличиваться. Укрупнение зерен тугоплавкого компонента обусловлено механизмом собирательной рекристаллизации.  [c.186]

Для изготовления мощных контактов применяют следующие системы из тугоплавких и электропроводных металлов, не сплавляющихся между собой 1) серебро с кобальтом, никелем, хромом, молибденом, вольфрамом, танталом, 2) медь с фольфрамом и молибденом, 3) золото с вольфрамом и молибденом. Бинарные и более сложные композиции содержат в основном указанные композиции металлов. В некоторых случаях состав сплавов усложняется специальными примесями, но принцип выбора основных компонентов для композиций соблюдается всегда. Вследствие несплавляемости компонентов композиции готовят спеканием смеси металлических порошков и пропиткой компонента В расплавленным компонентом Л. В результате получается смесь компонентов А и В, причем стремятся, чтобы оба компонента представляли собой непрерывно взаимно- переплетающиеся скелетные структуры. При такой микроструктуре и при правильно подобранных гранулометрических составах порошков достигается наиболее выгодное сочетание электропроводности и термической устойчивости композиций.  [c.253]

К тугоплавким сплавам относятся сплавы на основе титана, вольфрама, молибдена, ниобия, ванадия. Эти сплавы имеют высокую температуру плавления (1700...3500 °С) и отличаются повышенной прочностью при высоких температурах. Как конструкционный материал чаще используют титановые сплавы. Для фасонных отливок применяют сплавы ВТ1Л, ВТ5Л, ВТ6Л, ВТЗ-1Л и др. Литейные свойства титановых сплавов характеризуются малым интервалом температур кристаллизации и высокой химической активностью по отношению к окружающей среде и формовочным материалам.  [c.49]

Вольфрам применяют также для изготовления контактов. К достоинствам вольфрамовых контактов можно отнести устойчивость в работе, малый механический износ ввиду высокой твердости материала, способность противостоять действию дуги и отсутствие при-вариваемости вследствие большой тугоплавкости, малую подверженность электрической эрозии (т. е. износу с образованием кратеров и нзростов в результате местных перегревов и плавления метялла). Недостатками вольфрама как контактного материала являются трудная обрабатываемость, образование в атмосферных условиях оксидных пленок, необходимость применять большие давления для обеспечения малого электрического сопротивления контакта.  [c.214]


Смотреть страницы где упоминается термин Тугоплавкие вольфрама : [c.282]    [c.99]    [c.67]    [c.290]    [c.91]    [c.200]    [c.421]    [c.313]    [c.30]    [c.263]    [c.514]    [c.11]    [c.295]    [c.302]   
Морская коррозия (1983) -- [ c.162 ]



ПОИСК



Вольфрам

Сварка меди с тугоплавкими металлами (молибденом, вольфрамом, танталом, ниобиСтеклов)

Тугоплавкие материалы Теплоемкость, коэффициенты теплопроводности и линейного расширения вольфрама и молибдена



© 2025 Mash-xxl.info Реклама на сайте