Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Платина-рутений

В качестве контактных материалов для слаботочных разрывных контактов помимо чистых тугоплавких металлов (вольфрама, молибдена) применяются благородные металлы (платина, золото, серебро), а также различные сплавы на их основе (золото—серебро, платина—рутений, платина—родий) металлокерамические композиции (например, Ag— dO).  [c.130]

На воздухе наибольшая потеря массы происходит у осмия затем у рутения, иридия, платины, родия, палладия. В вакууме наиболее склонен к возгонке палладий, затем родий, платина, рутений, иридий, осмий. При нагревании с фосфором, мышьяком, серой, селеном, теллуром, углеродом платиновые металлы разрушаются.  [c.164]


Фиг. 21. Свойства сплавов системы платина—рутений. Фиг. 21. <a href="/info/57775">Свойства сплавов</a> системы платина—рутений.
Платина — рутений. Рутений чрезвычайно сильно повышает твердость платины и электрическое сопротивление. В качестве контактных материалов применяют сплавы, содержащие до 14 % Ни. При большом содержании рутения сплавы обрабатываются с трудом. Сплавы обладают меньшей, чем у платины, склонностью к свариванию и образованию игл. Минимальный ток дуги у сплава с 5 % Ни почти тот же, что у сплава с 10 % 1г. При нагревании на воздухе рутений окисляется с образованием летучих окислов.  [c.301]

Легирование коррозионностойких сталей палладием, платиной, рутением, рением.  [c.123]

Легирование титана и его сплавов палладием, платиной, рутением Легирование Nb или сплавов Nb-Ta платиной  [c.123]

В качестве катодных легирующих присадок могут быть использованы различные электроположительные металлы, как палладий, платина, рутений и ряд других металлов платиновой группы, а в некоторых условиях даже и менее благородные металлы, как рений, медь, никель, молибден, вольфрам и др.  [c.19]

Для разрывных контактов применяются следующие материалы платина, палладий, радий, золото, серебро, воль фрам, молибден, никель, медь, медь-кадмий, платина-ро дий, платина-иридий, платина-рутений, платина-никель платина-вольфрам, палладий-иридий, палладий-серебро палладий-серебро-кобальт, палладий-медь, золото-серебро золото-никель, золото-цирконий, серебро-медь, серебро кадмий. Особую ценность представляют сплавы палладия с серебром и медные. Применение контактных материалов см. в табл. 6.9.  [c.278]

Как установил Н. Д. Томашов, введение в титан катодных добавок, таких как палладий, платина, рутений, рений и др., приводит к резкому уменьшению скорости коррозии в растворах серной, соляной и фосфорной кислот. Так, например, при содержании 0,2% Р(1 скорость коррозии титана в 5%-ном растворе НгЗО при температуре кипения уменьшается в 50 раз.  [c.142]

ПАЛЛАДИЙ, ПЛАТИНА, РУТЕНИЙ  [c.226]

Сплавы платина— рутений. Добавки рутения позволяют наиболее существенным образом повысить твердость платины, однако уже при 15% Ru достигается предел обрабатываемости, что связано с различием кристаллографических структур платины и рутения. Не считая несколько большей склонности к окислению прн температурах выше 800° С, коррозионная стойкость сплавов платина — рутений сравнима со стойкостью платиноиридиевых сплавов с таким же содержанием платины.  [c.217]


В качестве материала для изготовления фильер экструдеров вискозного волокна часто используются сплавы платина — золото, особенно сплав 30 Pt — 70 Au, в который для получения мелкозернистой структуры вводится также 0,5% Rh. Этот сплав допускает значительное упрочнение путем соответствующей термообработки. Отверстия проделывают при твердости материала около HV 120, а после окончательной термообработки твердость материала готовой фильеры составляет примерно HV 220. Такая высокая твердость делает металл стойким к царапанию и позволяет производить зеркальное полирование лицевой поверхности фильеры. Малый размер зерна материала обеспечивает в высокой степени круглую форму отверстий. Для изготовления фильер применяют также сплавы родий — платина, иридий — платина, иридий — родий — платина, рутений — платина и рутений — палладий.  [c.223]

Из растворов данного состава возможно получение покрытия толщиной до 60 мк. Для нанесения палладия на вышеуказанные металлы, а также на палладий, платину, рутений, серебро и сплавы с большим содержанием никеля или кобальта может быть рекомендован состав, моль/литр [99]  [c.196]

Широкое распространение в практике очистки автомобильных ОГ получили катализаторы на основе благородных металлов — палладия и платины. Они отличаются хорошей селективностью, низкими температурами начала эффективной работы, достаточной долговечностью. Катализаторы, применяемые в реакциях восстановления N0 содержат родий и рутений. Недостаток указанных катализаторов — высокая стоимость.  [c.65]

ЯТП (0,650 мкм) ванадия ЯТП (0,653 мкм) ванадия >1< ТЗ платины ТП циркония ТЗ родня ЯТП (0,650 мкм) рутения  [c.176]

К благородным металлам относятся платина, палладий, родий, иридий, рутений и осмий, а также золото и серебро. Они встречаются в природе в самородном состоянии. Наиболее важными в технике являются платина и ее сплавы с иридием. Палладий не находит себе должного применения. Замена платины и ее сплавов с иридием сплавами палладия, рутения, серебра и даже родия удешевляет изготовление приборов. Однако палладий по химическим свойствам и температуре плавления существенно отличается от платины и поэтому не все --да служит ее полноценным заменителем.  [c.394]

Из восьми благородных металлов четыре (серебро, золото, платина и палладий) обладают хорошей пластичностью, малой твердостью и малой упругостью (табл. 10). Иридий и родий малопластичны и более тверды. Рутений и осмий обладают высокой твердостью, упругостью и хрупкостью. Благородные металлы, осажденные электролизом, имеют очень высокую твердость по Викерсу платина 606—642, палладий 190—435, родий 550—1050. Серебро, золото, платина и палладий имеют очень небольшой предел прочности на растяжение (12—  [c.401]

Механические свойства сплавов платины с рутением  [c.412]

Рутениевые покрытия в настоящее время не используются на практике, а между тем свойства металлургического рутения указывают на эффективность применения его для покрытия электрических контактов, кроме того, рутений менее дефицитен, чем платина и родий. К сожалению, технология получения рутениевых покрытий недостаточно отработана, но при усовершенствовании ее рутениевые покрытия могут с успехом заменить родиевые и платиновые.  [c.68]

Рутений менее дефицитен, чем платина и родий, и значительно дешевле как видно из табл. 31, рутений имеет наибольшую твердость и температуру плавления, он легко пассивируется на воздухе и очень хорошо противостоит действию агрессивных сред. На него не действуют разбавленные и концентрированные кислоты и щелочи. Рутений стоек к воздействию соединений фосфора и азота, в ряде случаев он превосходит по химической стойкости палладий, родий и платину он более устойчив к воздействию серы. Пленки сернистых соединений, образующиеся на поверхности, отрицательно сказываются на переходном электрическом сопротивлении. При обычных и повышенных температурах на воздухе и в среде, богатой кислородом, рутений не тускнеет и сохраняет блеск, что позволяет использовать его при покрытии отражателей. Рутений в отличие от платины и палладия не поглощает водорода и не образует гидридов. Несмотря на хорошие физико-механические свойства рутений недостаточно широко используется в промышленности. Одной из причин этого является сложность изготовления деталей из рутения вследствие высокой температуры плавления, высокой твердости и хрупкости. Рутений подвергается высокотемпературному окислению, как и родий образующаяся окисная пленка обладает хорошей электропроводностью.  [c.76]


Для выявления структуры родия, рутения, иридия и осмия или сплавов платины с высоким содержанием этих металлов реактив не пригоден.  [c.248]

В табл. 4 дано относительное изменение длины образцов при нагревании благородных металлов. Наибольшей теплопроводностью из всех металлов обладает серебро 1,0 кал1см-свк°С (табл. 2). Несмотря на высокую температуру кипения, некоторые благородные металлы обладают значительной летучестью. На фиг. 1 приведены потери в весе (в %) платиновых металлов при нагревании до 1300° С. Наименьшей летучестью обладают родий и платина. Рутений и иридий довольно интенсивно испаряются. Осмий обладает еще большей летучестью. Летучесть металлов платиновой группы при высокой температуре  [c.396]

Платина — рутений. Рутений растворяется в платине в твердом состоянии вплоть до 66% весовых. В области сплавов, богатых рутением, следует предполагать разрыв сплоп[ности твердых растворов, так как компоненты обладают различными структурами кристаллических решеток.  [c.411]

Особый интерес представляет применение благородных металлов платиновой группы при так называемом катодном легировании сталей, разработанном группой ученых АН СССР. Сущность катодного легирования заключается в повышении эффективности катодных процессов в пассивирующихся системах, в результате чего потенциал системы смещается в сторону положительных значений и она переходит в пассивное состояние. В качестве катодных легирующих добавок применяют небольшие количества (0,1—0,5%) палладия, платины, рутения и др.  [c.149]

В — при 410—450°С. И — конверторы из аустенитной нержавеющей стали для получения цианистого водорода из аммиака и воздуха с йатализатором типа платина — рутений при температуре красного каления.  [c.500]

ПлРу-10 Платина—рутений 90/10 19950 1780 190 0,430  [c.52]

В качестве катодных присадок для повышения пассиви-руемости титана и его сплавов могут быть использованы различные электроположительные металлы (палладий, платина, рутений и ряд других металлов платиновой группы), а в некоторых условиях даже и менее благородные металлы — Re, Си, Ni, Мо, W и др.) Дальнейшее исследование возможности увеличения пассивируемости сплавов применением в качестве активных катодных центров некоторых интерметаллидов и таких соединений как карбиды, нитриды, силициды [2, 97] для повышения пассивации титана может привести также к интересным и важным результатам.  [c.126]

Этот эффект обеспечивает значительное противоизносное, противозадирное и антифрикционное действие, а также ускоряет приработку пар трения. Впервые эффект самопроизвольного образования полимерных пленок на поверхностях трения ( полимеров трения ) в смазочной среде был обнаружен в 1957 г. Хер-мансом и Эганом [13]. Ими было показано, что при активации трением под действием повышенной температуры, каталитического влияния свежеобнаженной поверхности металла и эмиссии поверхностью металла экзоэлектронов и других частиц происходит образование из молекул углеводородов смазочного материала активных радикалов (например, путем разрыва связи углерод - водород или углерод - углерод). При этом катализаторами образования полимерных пленок служат такие металлы, как палладий, платина, рутений, молибден, тантал и хром, в то время как золото, серебро, а также железо, медь, вольфрам и никель не оказывают заметного влияния на образование полимеров трения . Наиболее эффективны в этом случае углеводороды, обладающие ненасыщенными связями и неоднородностями структуры молекул, а также ароматические соединения. Затем происходит сшивка при трении до молекул с очень большой молекулярной массой и высаживание их на поверхностях трения.  [c.238]

Эти сплавы ведут себя аналогично платиноиридиевым сплавам. Раствором K N при плотности тока 0,05 А/см и продолжительности травления 25 мин выявляют границы, зерен раствором H l+Na l при плотности тока 0,1 А/см — их поверхности (сплавы состоят из 80% Pt и 20% Rh). Платина — рутений  [c.303]

Благородные металлы — серебро, золото, металлы платиновой группы (платина, палладий, иридий, родий, осмий, рутений). К ним может быть отнесена и полублагородная 1медь. Обладают высокой устойчивостью против коррозии.  [c.17]

Низкая коррозионная стойкость титана в кипящих растворах НС1 или H2SO4 (114 мм/год в Ю % НС1) повышается на три порядка в присутствии небольших количеств ионов или Fe (0,15 мм/год в кипящей 10 % НС1 с добавкой 0,02 моль/л Си " или Fe ) [8]. Присутствие небольшого, количества никеля как в среде, так и в виде легирующей добавки к титану повышает коррозионную стойкость. Показано, например, что титан пассивируется в кипящем 3 % растворе Na l, подкисленном до pH = 1, если металл легировать 0,1 % Ni или ввести в раствор 0,2 мг/л [9]. Наименьшим коррозионным разрушениям подвергается базисная плоскость гексагональной плотноупакованной решетки титана. Небольшие легирующие добавки палладия, платины или рутения также эффективно уменьшают скорость коррозии в кипящем Ю % растворе НС1 (2,5 мм/год для сплава с 0,1 % Pd см. рис. 24.1) [10, 11]. Если на поверхности титана присутствует палладий, скорость коррозии в кипящем 1т растворе H2SO4 уменьшается в 1000 раз 112], причем одинаково эффективно по-  [c.373]

Технеций растворяется в серной кислоте, перекиси водорода, бромной воде, в смеси соляной кислоты и перекиси водорода легко окисляется азотной кислотой. Известны соединения технеция с кислородом, серой, галоидами, фосфором, азотом, углеродом. Непрерывные ряды твердых растворов образует технеций с рутением, осмием, рением, легирование нержавеющей стали технецием улучшает ее коррозионную стойкость. Литой металл чистотой 99,92 % при 20 С хрупок он растрескивается при незначительных обжатиях холодной прокатки. После выдавливания и вакуумного отжига при 1300 X технеций выдерживает холодную прокатку с обжатиями 15—20 % за проход и волочение с обжатием 10 % за проход. Из технеция можно изготовлять прутки, проволоку, ленту и фольгу. Упрочнение при деформировании технеция намного больше, чем платины, но ниже, чем рения.  [c.141]


Палладий и платина высокопластичны родий и иридий уступают нм в этом отношении, а рутений и осмий хрупки. Это различие вызвано межкрнсталлитными примесями. Высокочистый рутений, а также монокристаллы рутения, родия и иридия пластичны. Существенную роль играет и то, что хотя эти металлы и именуются благородными, но окисляются и вследствие этого охрупчиваются. Защита от окисления (например, слоем платины) существенно повышает пластичность.  [c.164]

Из восьми благородных металлов шесть имеют структуру кристаллической решетки куба с центрированными гранями (табл. I) родий, палладий, серебро, иридий, платина и золото. Два металла — рутений и осмнн — имеют гексагональную плотноупакованную решетку. Родий известен в двух модификациях uRh имеет решетку простого куба, pRh — решетку куба с центрированными гранями. Температура превращения а 1030° С. Имеются предположения о существовании четырех модификаций рутения.  [c.394]

Отливка золота, серебра, платины и палладия. 1 )оизводится в стальные изложницы. Проковку золота и серебра производят в интервале температур 600— 800° С платину и палладий куют при 1000—1200 С, Прокатку и волочение зо лота, серебра, платины и палладия производят на холоду без промежуточных отжигов. Сплавы золота и серебра с медью отжигают в восстановительной атмосфере. Порошки родня и иридия прессуют, спекают и куют при 1200—1500 С Прокатку и волочение производят в горячем состоянии. Рутений и осмий не могут быть подвергнуты обработке давлением даже при высоких температурах.  [c.404]

Высокая коррозионная стойкость в концентрированных кисло1ах и иеокис ляемость при нагревании на воздухе позволяют применять благородные металлы в самых жестких условиях работы. Наиболее коррозионностойкими в кислотах являются иридий, рутении, платина и золото. Палладий и серебро дозольнс легко реагируют с кислотами. В табл. 12 приведены сравнительные данные по коррозионной стойкости благородных металлов. При нагревании на воздухе платина, золото и серебро практически не окисляются. Сравнительно легко окис ляются осмий, рутений и иридий (табл. 13). Эти металлы образуют стойкие окислы, обладающие высокой упругостью паров, поэтому при высоких температурах наблюдается их испарение.  [c.404]

Платина имеет структуру кри сталлической решетки куба с центрированными гранями. С железом, кобальтом, никелем, родием, палладием, иридием и медью, имеющими такую же структуру решетки, платина образует непрерывные ряды твердых растворов. Исключение представляют серебро и золото, которые ограниченно растворимы в платине. Влияние небольших добавок различных элементов на твердость плагины показано на фиг. 1.3. Наиболее эффективно увеличивают твердость нлатины добавки никеля, осмия и рутения. Легирование платинн  [c.406]


Смотреть страницы где упоминается термин Платина-рутений : [c.253]    [c.527]    [c.97]    [c.49]    [c.102]    [c.279]    [c.418]    [c.163]    [c.407]    [c.295]    [c.64]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Платина-рутений



ПОИСК



Группа VIII. Платиновая группа металлов рутений, родий, иридий, палладий, платина

Палладий, платина, рутений

Платина

Платинит

Рутений

Сплавы платина—палладий—рутений

Сплавы платина—рутений



© 2025 Mash-xxl.info Реклама на сайте