Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механизм турбулентного движения. Структура потока

Пока что механизм турбулентного движения изучен недостаточно для его строгого расчета приходится характеризовать это движение некоторыми осредненными во времени значениями величин. Последние изменяются вполне закономерно и в частном случае могут оставаться постоянными во времени. Опыт показывает, что при замене в уравнениях переноса количества движения и энергии для потока вязкой жидкости истинных (мгновенных) величин осредненными по времени их значениями турбулентное движение при всей сложности своей внутренней структуры все же может быть описано этими уравнениями.  [c.22]


Турбулентное движение жидкости в трубах и каналах уже давно стало предметом многочисленных исследований, так как в больщинстве случаев жидкости движутся в условиях турбулентного режима. Несмотря на это, до сих пор еще не создано достаточно удовлетворительной теории турбулентного движения, которая непосредственно вытекала бы из основных уравнений гидродинамики и полностью подтверждалась опытом (как для случая ламинарного движения). Это объясняется сложностью структуры турбулентного потока, внутренний механизм которого до сих пор еще полностью не исследован.  [c.168]

Следует отметить, что кинематическая структура потока в некруглых трубах имеет свои особенности. На рис. 102 показаны циркуляционные течения, возникающие в прямоугольных трубах. Эти движения в плоскостях, нормальных к оси потока, называют поперечной циркуляцией. В прямых круглых трубах достаточной длины поперечная циркуляция не возникает. Причина таких вторичных течений еще до сих пор четко не выяснена. Можно допустить, что из тех мест, где касательные напряжения больше, жидкость вследствие механизма турбулентности переносится в середину трубы (канала), а оттуда течет к местам с меньшими касательными напряжениями, в частности, в углы рассматриваемых сечений. Это приводит к тому, что в местах с большими касательными напряжениями скорость немного уменьшается, а в местах с меньшими касательными напряжениями, наоборот, немного увеличивается. В результате касательные напряжения у стенок выравниваются. Иначе говоря, динамическая структура потока в прямоугольных трубах в целом не отличается от осесимметричного течения в круглых трубах.  [c.179]

Распределение турбулентной вязкости поперек турбулентного потока зависит от его структуры. Турбулентный поток условно можно разделить на три зоны вязкий слой, буферный слой (переходная область) и турбулентное ядро, В вязком слое, в области, непосредственно прилегающей к стенке, движение жидкости преимущественно ламинарное, т. е. молекулярная вязкость больше, чем турбулентная. Несколько дальше от стенки (за вязким слоем) течение становится нестационарным (буферный слой). После буферного слоя расположено турбулентное ядро, где весь поток вовлечен в турбулентное движение. Следует отметить, что вязкий слой не является полностью невозмущенным. Прилегающие к стенке сравнительно крупные элементы жидкости, имеющие низкую скорость, периодически отрываются от стенки и переносятся в ядро потока. Механизм этого явления полностью еще не изучен, но вероятнее всего этот процесс обусловлен неустойчивостью вязкого слоя. Элемент жидкости, оторвавшийся от поверхности, замещается жидкостью с большей энергией из удаленной от поверхности области именно эта жидкость приносит энергию, необходимую для отрыва элемента жидкости от поверхности. В ядре потока турбулентность генерируется и поддерживается элементами жидкости, пришедшими от стенки.  [c.185]


В дальнейшем в статистических теориях пристенной турбулентности сохранялось это традиционное разделение на осредненное и пульсационное движение и использовались лишь более развитые математические модели турбулентности вместо ранних феноменологических концепций, ныне признанных неудовлетворительными. Использование более тонких математических методов сопровождалось чисто эмпирическим инженерным подходом к проблеме с целью разработки расчета для описания пограничного слоя в целом. Развитие физического анализа механизма турбулентности, занимающего промежуточное положение между этими двумя крайними направлениями, было задержано на многие годы ввиду недостатка точных экспериментальных данных (в особенности визуальных наблюдений), относящихся к нестационарной структуре потока.  [c.300]

Турбулентность принадлежит к числу очень распространенных и, вместе с тем, наиболее сложных явлений природы, связанных с возникновением и развитием организованных структур (вихрей различного масштаба) при определенных режимах движения жидкости в существенно нелинейной гидродинамической системе. Прямое численное моделирование турбулентных течений сопряжено с большими математическими трудностями, а построение общей теории турбулентности, из-за сложности механизмов взаимодействующих когерентных структур, вряд ли возможно. При потере устойчивости ламинарного течения, определяемой критическим значением числа Рейнольдса, в такой системе возникает трехмерное нестационарное движение, в котором, вследствие растяжения вихрей, создается непрерывное распределение пульсаций скорости в интервале длин волн от минимальных, определяемых вязкими силами, до максимальных, определяемых границами течения. На условия возникновения завихренности и структуру развитой турбулентности оказывают влияние как физические свойства среды, такие как молекулярная вязкость, с которой связана диссипация энергии в турбулентном потоке, так и условия на границе, где наблюдаются тонкие пограничные вихревые слои, неустойчивость которых проявляется в порождении ими вихревых трубок. Турбулизация приводит к быстрому перемешиванию частиц среды и повышению эффективности переноса импульса, тепла и массы, а в многокомпонентных средах - также способствует ускорению протекания химических реакций. По мере накопления знаний о разнообразных природных объектах, в которых турбулентность играет значительную, а во многих случаях определяющую роль, моделирование этого явления и связанных с ним эффектов приобретает все более важное значение.  [c.5]

Проведен анализ и обобщены результаты теоретического и экспериментального исследования механизма турбулентного сечения в каналах различной геометрии. Даны основы теоретического описания турбулентного движения и показана физическая сущность различных статистических характеристик потока. Изложены методы экспериментального исследования структуры турбулентных течений. Рассматривается структура турбулентных потоков и механизм переноса количества движения и тепла на основе имеющихся данных. Анализируются особенности процессов гидродинамики и теплообмена в каналах различной формы.  [c.351]

Впервые гипотеза о физическом механизме турбулентного перемешивания была высказана английским ученым Л. Ричардсоном в 1922 г. Условно турбулентное движение принято рассматривать как совокупное движение отдельных структур, называемых молями либо вихрями, совершающими как поступательное, так и вращательное движение. По Ричардсону развитая турбулентность представляет собой иерархию вихрей . При зарождении вихри имеют большие размеры, соизмеримые с размерами канала. Затем за счет потери устойчивости они распадаются на более мелкие, передавая при этом им свою энергию. Возникает каскадный процесс, в котором энергия осредненного потока последовательно передается вихрям все более мелких масштабов. В конечном итоге образуются вихри минимального масштаба, которые далее не разрушаются. При этом нижний размер вихря (турбулентного образования) определяется вязкостью среды. В самых малых вихрях кинетическая энергия турбулентности за счет сил вязкого трения превращается в тепло, т.е. происходит диссипация энергии. Это указывает на необратимый характер процесса.  [c.90]


В настоящее время разработаны и успешно применяются численные методы-решения многих теплофизических задач расчет температурного состояния-твердых тел, температурных полей в потоках жидкости и газа, в жидких и газовых прослойках, заключенных в неподвижные или вращающиеся полости исследование закономерностей движения теплоносителя с целью выявления механизма процессов теплообмена исследование структуры пограничного слоя, теплообмена и трения на твердой поверхности и т. п. Одним из наиболее успешно развивающихся направлений использования математического эксперимента в теплофизических исследованиях является изучение закономерностей тепломассообмена и трения в потоках жидкости и газа с использованием теории пограничного слоя. Поэтому в качестве примера рассмотрим более подробно основные этапы математического эксперимента по исследованию сопротивления трения и теплоотдачи турбулентного потока к твердой поверхности. Ограничим задачу случаем стационарного течения несжимаемой жидкости с постоянными теплофизическими свойствами около гладкой плоской поверхности (в общем случае проницаемой).  [c.66]

Наряду с различием конфигураций граничных поверхностей необходимо учитывать влияние режимов движения жидкости на величину и механизм потерь. Как известно из гл. 2 и 5, кинематические структуры ламинарного и турбулентного потоков различны турбулентные пульсации порождают добавочные касательные напряжения, которые обусловливают увеличение потерь энергии в турбулентных потоках по сравнению с ламинарными при сопоставимых условиях. Для оценки потерь важно знать условия перехода ламинарного течения в турбулентное. Этот вопрос рассмотрен в 6 настоящей главы. Здесь укажем только на классический опыт О. Рейнольдса, который, наблюдая поведение подкрашенных струек жидкости в стеклянной трубке, установил существование критического значения числа Ре = цd/v, определяющего границу между ламинарным и турбулентным режимами. Если для круглых труб число Рейнольдса опре-152  [c.152]

Стержневой режим в вертикальной трубе. Сравнительно полно как теоретически, так и экспериментально исследован в работах [35, 123, 125], которые проводились прн нестационарном охлаждении вертикального трубопровода (опускное движение) жидким азотом. Экспериментальному исследованию предшествовали теоретический анализ и визуальные наблюдения. Цель теоретического анализа — качественное изучение механизма процесса, выяснение влияния режимных параметров (давления, расхода, недогрева и температурного напора) на тепловой поток <7 -, получение структурного вида формул для обобщения опытных данных и уточнение задач эксперимента. Качественный характер теоретического анализа объясняется отсутствием данных о структуре неравновесного двухфазного потока, а именно по структуре турбулентной струи, по механизму взаимодействия жидкой струи с пленкой пара, по выработке турбулентности и ее распределению по толщине пленки, по скольжению фаз.  [c.186]

Итак, наряду с явлениями вязкости и теплопроводности, развивающимися на микрофизическом уровне, в жидких и газообразных средах существует турбулентная вязкость и турбулентная теплопроводность, которые обусловливаются возникающим при определенных обстоятельствах макроскопическим пульсацион-ным движением молей. В отличие от коэффициентов и X коэффициенты iJ.,f и только отчасти зависят от физических свойств данной среды, определяемых ее внутренним состоянием, главным же образом эти характеристики турбулентной структуры течения зависят от конфигурации и размеров поля, от уровня осреднен-ных скоростей, от первоначальной организации потока и от других внешних факторов. Кроме того, величины и Х могут меняться и действительно меняются от места к месту. Вместе с тем, как показывает опыт, коэффициенты [j.,,, и Х. , часто в тысячи раз превосходят величины р. и л, вследствие чего в таких случаях механизм турбулентного обмена становится абсолютно доминирующим.  [c.78]

Структура потока при турбулентном режиме движения сложна, и в связи с этим делались попытки создать упрощенные схемы механизма турбулентного потока. По схеме, предложенной Л. Прандтлем, при турбулентном режиме движения основная часть потока состоит из турбулентного ядра, в котором наблюдаются пульсацил скорости и происходит перемешивание частиц. При турбулентном режиме движения, непосредстненно примыкая к стенке, расположен тонкий слой, движение в котором близко к ламинарному. Этот пристенный слой условно называется ламинарной пленкой. На стенке скорость движения равна нулю, а в пределах ламинарной пленки скорость увеличивается по / пнейному закону до величины дл, которая равна  [c.103]

Кроме конфигурации граничных поверхностей необходимо учитывать влияние режимов движения жидкости па величину и механизм, потерь. Как известно из гл. 2 и 5, кинематические структуры ламинарного ji турбулентного потоков различны турбулентные пулбсащш "Гпорождают добавочные касательные напряжения, которые вызывают увеличение потерь энергии в турбулентных потоках по сравнению с ламинарными при сопоставимых условиях. Для оценки потерь важно знать условия перехода ламинарного течения в турбулентное. Этот вопрос рассмотрен в п. 6.6. Здесь укажем только на классический опыт О. Рейнольдса, который, наблюдая поведение подкрашенных струек жидкости в стеклянной трубке, установил сугцествование критического значения числа Re =-- vdh, определяющего границу между ламинарным и турбулентным режимами. Если для круглых труб число Рейнольдса определять по формуле Re = vdiv (где а — средняя скорость потока d—диаметр трубы), то, как показали опыты О. Рейнольдса и других исследователей, при Re < Re p = = 2300 наблюдается устойчивый ламинарный режим, при Re >  [c.140]



Смотреть страницы где упоминается термин Механизм турбулентного движения. Структура потока : [c.125]    [c.317]    [c.765]   
Смотреть главы в:

Гидравлика и гидропривод  -> Механизм турбулентного движения. Структура потока



ПОИСК



Движение турбулентное

Движения механизмов

Механизм турбулентного потока

Поток—см. Движение

Структура механизмов

Структура потока

Структура потоков. Турбулентность

Структура турбулентного потока

Турбулентность потока

Турбулентный поток



© 2025 Mash-xxl.info Реклама на сайте