Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение сложного изгиба балки

Подставляя (13.20) в (13.18), получаем дифференциальное уравнение сложного изгиба балки  [c.317]

Полученные следствия из вариационного принципа типа Рейс-нера носят, конечно, достаточно тривиальный характер. Эти уравнения можно было получить из обычных уравнений изгиба балки простой зз]меной модуля упругости соответствующим оператором. Но можно представить себе более сложный случай, когда Е и К представляют собою функции координаты у. Так будет, например, если балка неравномерно нагрета по толщине ядро наследственности в сильной степени зависит от температуры. Уравнение (17.11.6) в этом случае сохраняет силу, только вместо i/E и К нужно подставить приведенные величины, а именно.  [c.606]


Интегрирование уравнения изгиба. Интегрированию уравнения (116.4) посвящена весьма большая литература, хотя математически вопрос и представляемая элементарным. Правая часть уравнения обычно не является аналитической функцией координаты г, аналитическое выражение момента меняется от участка к участку. Поэтому задача об определении прогибов может оказаться довольно трудоемкой. На каждом участке появляются свои константы интегрирования, я их приходится определять из условий сопряжения. Излагаемый ниже метод интегрирования по идее восходит к Эйлеру, для более сложных уравнений изгиба балки на упругом основании % колебаний стержня ои разработан А. Н. Крыловым для уравнения (116.4) этот метод использовался многими авторами. Проинтегрировав уравнение (116.4) в пределах от нуля до г, получим  [c.253]

При помощи уравнений (11 ) и (12) на основе принципа наложения мояшо решать и более сложные задачи. Возьмем, например, равномерно нагруженную бесконечно длинную балку на упругом основании, имеющую свободно опертый конец (рис. 7, в). Реакция Я на конце найдется из того условия, что прогиб на опоре равен нулю. Замечая, что на большом расстоянии от опоры изгиб балки является незначительным и что ее осадка может -быть принята равной д1к, мы можем вычислить значение / путем подстановки в уравнение (1Г).  [c.21]

Когда от изгиба сосредоточенными силами переходим к случаю действия распределенных нагрузок, задача становится более сложной. Точное решение, полученное для изгиба равномерно распределенной нагрузкой показывает, что в этом случае выражение для кривизны составляется из двух членов пропорционального изгибающему моменту и постоянного члена, обусловленного отчасти влиянием касательных напряжений, отчасти нормальными напряжениями, действующими по площадкам, параллельным оси балки. Этот постоянный член, представляющий поправку к гипотезе Бернулли — Эйлера, является малой величиной такого порядка, как квадрат отношения высоты балки к ее длине. В случае тонких призматических стержней этой поправкой будем пренебрегать и при определении прогибов под действием сил, лежащих в одной из главных плоскостей стержня, будем исходить из уравнения  [c.189]

Если воспрепятствовать смещению концов балки в горизонтальном направлении, как показано на рис. 7.20, то на каждом конце балки возникает горизонтальная реакция Н. Эта сила будет заставлять ось балки удлиняться при изгибе. Кроме того, сила Я сама будет оказывать влияние на возникновение изгибающих моментов в балке, а отсюда также и на линию прогибов балки. Вместо того чтобы попытаться провести точное исследование этой сложной задачи, найдем приближенное выражение для силы Я, что позволит оценить, насколько она важна. Линию прогибов балки с достаточной точностью можно аппроксимировать параболой, уравнение которой имеет вид  [c.297]


В более сложных случаях изгиба статически неопределимых балок перемещения сечений, освобожденных от лишних связей, выражаются через внешние нагрузки и лишние реакции отброшенных закреплений путем интегрирования дифференциального уравнения упругой линии основной статически определимой балки или с использованием для перемещений формул Максвелла—Мора. Рассмотрим в качестве примера дважды статически неопределимую балку, схема загружения и закрепления которой  [c.288]

В 1933 г. Н. М. Герсеванов [62, 63] предложил использовать для расчета балки на упругом основании функциональные прерыватели, применявшиеся им ранее в теории изгиба, которые дают возможность выразить любую сложную нагрузку, в том числе и прерывную, одним общим уравнением.  [c.83]

Основные случаи опрокидывания полос (балки вытянутого прямоугольного сечения) и двутавровых балок детально исследованы в работах С. П. Тимошенко [9—10], А. Н. Динника [2], А. П. Коробова [5] и др. Более сложные условия опирания и нагружения рассматривались главным образом приближенными методами в работах ряда авторов. В 1940 г. В. 3. Власов [1], исходя из общих уравнений теории оболочек, исследовал пространственные формы равновесия тонкостенных стержней и, в частности, боковое выпучивание при поперечном изгибе.  [c.268]

Ограничимся рассмотрением частного случая призматической балки (Д/ с = onst), тогда дифференциальное уравнение сложного изгиба приобретает вид  [c.317]

В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]

В теории линейных обыкновенных дифференциальных уравнений с постоянными коэффициентами такое построение решения известно под названием метода Коши- Исторически, однако, получилось так, что в сопротивлении материалов тот же по существу метод был разработан на основе механических идей, В создании метода в такой трактовке принял участие ряд ученых, среди них были А- Клебш, И. Г. Бубнов, Н. П. Пузыревский, А. Н. Крылов, Н, К- Снитко. Этот метод получил название метода начальных параметров. Он используется в механике твердых деформируемых тел не только при интегрировании уравнения изгиба балки, но и в других случаях (см. гл. II, XI), где ситуация аналогична (наличие участков)—при интегрировании дифференциальных уравнений изгиба балки на упругом основании, сложного (продольно-поперечного) изгиба балки и других аналогичных.  [c.215]


Связь балки с основанием считается двусторонней, т.е. основание упруго сопротивляется прогибу балки как вниз, так и вверх, без отрыва от основания. В более сложных моделях основания его реактивное воздействие на балку представляют в виде нагрузки и моментов, интенсивность которых связана с прогибом, углом поворота, кривизной и другими функциями изгиба балки. В качестве модели основания используется упругое полупространство, упругий слой [8, 9J. Для балки на Виклеровом основании уравнение изгиба  [c.21]

И при сложном изгибе выполнение прочностого расчета не исключает в определенных случаях необходимость проверки системы на жесткость. Здесь уже приходится составлять и интегрировать два дифференциальных уравнения — для вертикальных перемещений ьи и для и — перемещений вдоль оси у. Геометрическая сумма этих величин дает полное перемещение точек оси балки, вектор которого при переходе от одного сечения в другое меняется по величине и направлению. По этой причине изогнутая ось балки при сложном изгибе представляет собой в общих случаях довольно замысловатую пространственную кривую.  [c.161]

Решение. Из статической теории сложного (продольно-поперечного) изгиба гибкой балки (см. т. II, гл, XIII, 13.5, формула (13.23)) известно, что дифференциальное уравнение, соответствующее этому виду деформации балки, имеет вид  [c.201]

Французский инженер и ученый Луи Мари Анри Навье (1785—1836) привел в систему все разрозненные сведения, многое исправил и дополнил своими исследованиями. В то время как исследователи XVIII века ставили своей целью составить формулы для вычисления разрушающих нагрузок, Навье признал наиболее правильным находить то значение нагрузки, до которого сооружения ведут себя упруго — не получают остаточных деформаций. Он установил, что нейтральный слой изгибаемой балки проходит через ее ось, и дал правильное толкование постоянной С, входящей в формулу Бернулли =EJ применил дифференциальное уравнение изогнутой оси к различным случаям загружения балок и разработал метод решения статически неопределимых задач при растяжении, сжатии и изгибе исследовал продольный изгиб при эксцентричном приложении сжимающей нагрузки, а также сложные случаи совместного действия изгиба с растяжением или сжатием, изучил изгиб кривых стержней (арок), пластинок и др. В 1826 году Навье издал курс сопротивления материалов. Эта книга нашла широкое признание, ею пользовались как основным руководством инженеры во многих странах в течение нескольких десятков лет.  [c.560]


Смотреть страницы где упоминается термин Уравнение сложного изгиба балки : [c.415]    [c.301]   
Прикладная механика твердого деформируемого тела Том 3 (1981) -- [ c.209 ]



ПОИСК



Изгиб балок

Изгиб балок Уравнений

Уравнение изгиба

Уравнение оси балки



© 2025 Mash-xxl.info Реклама на сайте