Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вариационный принцип Мопертюи—Лагранжа

Утверждение это является аналогом принципа Гамильтона для консервативных систем и носит название вариационного принципа Мопертюи — Лагранжа,  [c.331]

Вариационный принцип (18) носит название принципа наименьшего действия Мопертюи — Лагранжа ).  [c.132]

Наиболее выдающиеся исследования Остроградского относятся к обобщениям основных принципов и методов механики. Он внес существенный вклад в развитие вариационных принципов. Вариационные принципы механики входят в круг вопросов, интересовавших Остроградского в течение всей его жизни. Постоянное возвращение к вариационному исчислению и вариационным принципам механики роднит ого с Лагранжем — одним из создателей вариационного исчисления и творцом аналитической механики. Ранее нами указывалось, что вариационными принципами механики занимались такие корифеи науки, как Ферма, Мопертюи, Эйлер, Лагранж, Гамильтон. Мы также отметили, что новый этап в разработке принципа наименьшего действия связан с именем Лагранжа, который поставил целью свести динамику к чистому анализу. В работах Лагранжа проблемы механики представляют собой лишь определенный класс задач вариационного исчисления.  [c.214]


Монография Н. Е. Жуковского О прочности движения (1882) содержит теорию устойчивости траекторий динамических систем, которую сейчас называют теорией орбитальной устойчивости. Этот труд систематизирует и пополняет результаты В. Томсона и П. Тэта, изложенные в их известном Трактате натуральной философии Для Томсона и Тэта отправным пунктом была теория кинетических фокусов К. Якоби, намеченная в его Лекциях по динамике . Якоби, исходя из наглядных геометрических соображений, показал, что на истинной траектории динамической системы действие , которое Входит в интегральные вариационные принципы механики (П. Мопертюи, Л. Эйлер, Ж. Лагранж), не обязательно минимально. Томсон и Тэт связали эти результаты с теорией устойчивости, показав, что минимальность действия на траектории влечет за собою устойчивость последней, тогда как стационарность действия на траектории,— а только к этому должен сводиться вариационный принцип механики,— оставляет вопрос об устойчивости траектории открытым, Жуковский справедливо оценил те несколько страниц из Трактата натуральной философии Томсона и Тэта, которые уделены авторами исследованию прочности (Жуковский пользуется этим термином вместо устойчивости), как только легкий набросок, в котором указываются пути для более обстоятельного исследования .  [c.122]

Несмотря на некоторую неопределенность, понятие действия прочно укоренилось в механике, благодаря публикации Вольфа в первом томе (1726) петербургских Комментариев и его развитию в трудах Мопертюи, Дарси, Эйлера, Лагранжа, Гамильтона, где оно рассматривалось не с позиций его стационарности, а как критерий экстремальности движения. Это способствовало появлению нового раздела математики — вариационного исчисления, позволившего сформировать новый взгляд на принципы построения механики и методы решения задач.  [c.117]

Вариационный принцип Мопертюи — Лагранжа. Рассмотрим теперь координатное пространство q и будем считать, что ось в этом пространстве играет такую же роль, какую в общем случае в расширенном координатном пространстве играла ось времени. В этом пространстве выберем дне точки и проведем между ними прямой путь, соответствующий уравнениям Якоби для рассматриваемой консервативной (обобщенно консервативной) системы. На этом пути /y = /i = onst. Проведем между этнми же точками однопараметрический пучок окольных путей, расположенных в изоэнергетическом подпространстве , т. е. таких, что вдоль них тоже Я = Л. В качестве функционала на этом пучке возьмем интеграл  [c.330]


Этот принцип иногд.а называют принципом Мопертюи, который высказал его первым, но в весьма неясной форме. Своим установлением этот принцип обязан Эйлеру и особенно Лагранжу (сборник Вариационные принципы механики, Физматгиз, 1959).  [c.230]

Как инструмент для изучения произвольных голономных систем материальных точек получены уравнения Лагранжа второго рода и канонические уравнения Гамильтона [66]. Дается понятие о лагран-жевом формализме [1, 36]. Изучается поведение полной энергии системы в зависимости от структуры обобщенных сил и кинетической энергии. Дается метод циклических координат [5, 58]. Устанавливается, что для голономных систем интегргипы количества движения, кинетического момента и обобщенный интегргия энергии Якоби [70] всегда могут быть представлены как следствие существования соответствующих циклических координат. Указывается на возможность использования аппарата теории групп для поиска интегралов движения [5]. Изложение вариационных принципов Гамильтона и Мопертюи-Лагранжа-Якоби [17, 38, 70] выполнено в соответствии с современной теорией оптимальных процессов [2, 5, 13]. Геометрически наглядная трактовка придана теории малых колеба-  [c.12]

Разделение мехапич. систем на голономные и неголо-номные весьма существенно, так как к Г. с. применимы многие сравнительно простые ур-ния механики и общие принципы, к-рые не справедливы для неголопом-ных систем. Движение Г. с. может изучаться с помощью Лагранжа уравнений механики, Гамильтона уравнений, Гамильтона — Якоби уравнения, а также с помощью наименьшего действия принципа В форме Гамильтона — Остроградского или Мопертюи — Лагранжа. К Г, с. приложимы также все те общие теоремы механики и дифференциальные вариационные принципы механики, К-рые справедливы и для неголономных систем.  [c.515]

Цель этой главы — познакомить читателя с использованием вариационных методов в теории динамических систем, которые позволяют находить интересные орбиты некоторых динамических систем как критические точки некоторых функционалов, определенных на подходящих вспомогательных пространствах, образованных потенциально возможными орбитами. Эта идея восходит к идее использования вариационных принципов в задачах классической механики, которой мы обязаны Мопертюи, Даламберу, Лагранжу и другим. В классической ситуации, когда время непрерывно, источником определенных трудностей является уже то обстоятельство, что пространство потенциально возможных орбит бесконечномерно. Для того чтобы продемонстрировать существенные черты вариационного подхода, не останавливаясь на вышеупомянутых технических деталях, в 2 мы рассмотрим модельную геометрическую задачу описания движения материальной точки внутри выпуклой области. Затем в 3 будет рассмотрен более общий класс сохраняющих площадь двумерных динамических систем — закручивающих отображений, которые напоминают нашу модельную задачу во многих существенных чертах, но включают также множество других интересных ситуаций. Главный результат этого параграфа — теорема 9.3.7, которая гарантирует существование бесконечного множества периодических орбит специального вида для любого закручивающего отображения. Не менее, чем сам этот результат, важен метод, с помощью которого он получен. Этот метод, основанный на использовании функционала действия (9.3.7) для периодических орбит, будет обобщен в гл. 13, что даст возможность получить весьма замечательные результаты о непериодических орбитах. После этого, развив предварительно необходимую локальную теорию, мы переходим к изучению систем с непрерывным временем, хотя мы проделаем это только для геодезических потоков, для которых функционал действия имеет ясный геометрический смысл. При этом важной компонентой доказательства оказывается сведение глобальной задачи к соответствующей конечномерной задаче путем рассмотрения геодезических ломаных (см. доказательство теоремы 9.5.8). В 6 и 7 мы сосредоточим внимание на описании инвариантных множеств, состоящих из глобально минимальных геодезических, т. е. таких геодезических, поднятия которых на универсальное накрытие представляют собой кратчайшие кривые среди кривых, соединяющих любые две точки на геодезической. Главные утверждения этих параграфов — теорема 9.6.7, связывающая геометрическую сложность многообразия, измеряемую скоростью роста объема шаров на универсальном накрытии, с динамической сложностью геодезического потока, выражаемой его топологической энтропией, и теорема 9.7.2, позволяющая построить бесконечно много замкнутых геодезических на поверхности рода больше единицы с произвольной метрикой. Эти геодезические во многом аналогичны биркгофовым минимальным периодическим орбитам из теоремы 9.3.7.  [c.341]


По-видимому, Мопертюи и Эйлер пришли к принципу каждый своим путем. В форме Мопертюи он применим для конечных изменений скорости, в форме Эйлера он охватывает непрерывные движения. Принимая во внимание необычность принципа, его универсальность и научный авторитет его создателей, легко предположить, что он быстро привлек внимание ученых. Начавшаяся в 1750 г. дискуссия , в которой активно участвовали Эйлер, Даламбер, Вольтер, Лагранж и другие, затянулась на несколько десятилетий. Для механики, для развития вариационных методов она оказалась чрезвычайно плодотворной. Она позволила выработать новый взгляд на физическую сущность законов природы, придала импульс развитию нового математического аппарата — вариационного исчисления и сформировала новый путь построения классической механики в работах Лагранжа, Гамильтона, Якоби, Гаусса. Эта траектория развития механики имела своим истоком законы и принципы Галилея, Декарта, Гюйгенса, Ньютона, Лейбница, Эйлера, Мопертюи, и ее математическая реализация была адекватна формированию в XVIII-XIX вв. новых разделов математики.  [c.238]


Смотреть главы в:

Классическая механика  -> Вариационный принцип Мопертюи—Лагранжа



ПОИСК



Интегральный вариационный принцип Мопертюи — Эйлера Лагранжа

Мопертюи

Мопертюи—Лагранжа принцип

Принцип Лагранжа

Принцип Мопертюи

Принцип вариационный

Принцип вариационный Лагранжа

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте