Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения тавровые

При разрезании круглого прутка или балок таврового, двутаврового, швеллерного профиля площадь сечения постоянно изменяется по мере прохождения пилы, вследствие чего при равномерной подаче пилы происходят резкие изменения силы резания. Эти изменения отрицательно отражаются на работе станка, вызывая сильные напряжения в отдельных его частях. Чтобы избежать этого, необходимо производить подачу соответственно величине площади разрезаемого сечения в данный момент так, чтобы станок всегда работал при одинаковой силе резания,- т. е. с переменной величиной подачи (рис. 46, а).  [c.165]


На рис. 3.17 показано тавровое соединение трубы, нагруженное изгибаюш,нм и крутящим моментами. Напряжения в шве от крутящего момента  [c.62]

Использование рассмотренных уравнений для оценки долговечности конструкций с существенно неоднородными полями напряжений связано со значительными трудностями, так как эти поля изменяют характер деформирования материала у вершины трещины. Например, в сварных тавровых соединениях остаточные напряжения приводят к ситуации, когда при действии циклической эксплуатационной нагрузки с коэффициентом асимметрии, равным нулю, коэффициент асимметрии нагружения материала в вершине трещины по мере ее развития изменяется от 0,8 до О, при этом КИН может принимать значения от пороговых до близких к критическим [198]. Следовательно, оценка долговечности такого рода конструкций может выполняться только с помощью уравнений, учитывающих переменную вдоль траектории развития трещины асимметрию нагружения в широком диапазоне СРТ. Как видно из выполненного обзора, такие уравнения являются в основном эмпирическими, содержащими большое количество взаимосвязанных параметров, определяемых только экспериментально на основании статистической обработки данных, что приводит к значительной сложности в получении и использовании этих зависимостей. Поэтому  [c.192]

На рис. 5.8—5.12 приведены распределения ОСН (напряжения отнесены к пределу текучести основного металла при Т = = 20 °С) в стыковом, тавровом соединениях и соединениях под-  [c.285]

Поперечные (для стыкового, таврового соединений и соединения подкрепления отверстия соответственно напряжения Охх, о у у, Охх) и продольные (огх, Ozz, Обв) напряжения в районе корня шва сжимающие, а в усилении и поверхностных слоях  [c.285]

В качестве примера на рис. 5.8, 5.9 представлено распределение толщинных напряжений Оуу в стыковом и тавровом сварных соединениях.  [c.287]

Если шов не перерезает несущий элемент, то, очевидно, сварочная усадка шва не приводит к значительным возмущениям в ней. Например, в узлах, образованных тавровыми соединениями, собственные ОСН затухают на расстоянии от шва порядка толщины листа (см. рис. 5.9). Очевидно, что такая ситуация справедлива, когда напряжения в стенке тавра Оуу малы. Если сварной шов перерезает несущий элемент, но не образует замкнутого контура в плоскости свариваемого листа (например, стыковой кольцевой или пазовый шов в сосуде давления), то на расстоянии от шва порядка толщины листа поперечные и продольные напряжения выравниваются (см. рис. 5.8). При этом  [c.297]

С целью исследования влияния собственных и реактивных сварочных напряжений на долговечных сварных узлах были проведены расчетные исследования по кинетике усталостной трещины в трех типах сварных узлов, образованных стыковым, тавровым и штуцерным соединениями [28, 86].  [c.317]


Обращают на себя внимание траектории трещин, развивающихся в узлах подкрепления отверстий. Хотя в них действуют значительные собственные растягивающие ОН, стремящиеся уменьшить отклонение трещины, тем не менее траектории трещины отклоняются от направления, перпендикулярного поверхности листа. Такая особенность обусловлена наличием значительных касательных напряжений Хху (больших, чем у стыковых или тавровых соединений) в области, где происходит раз-  [c.318]

На рис. 5.28 и 5.29 приведены расчетные кривые максимального значения /Стах, размаха Д/С коэффициента интенсивности напряжений и долговечности N от длины трещины L при различных уровнях максимальных напряжений для узлов, образованных стыковым, тавровым соединениями (схема и параметры  [c.319]

Результаты сопоставления экспериментальных и расчетных зависимостей длины усталостной трещины от числа циклов нагружения в исследуемых тавровых и стыковых соединениях показаны на рис. 5.28. Максимальная относительная погрешность по долговечности составляет около 25 %, что свидетельствует о достаточно хорошей сходимости результатов расчетов по разработанным методикам с экспериментальными данными. Для сравнения был проведен расчет долговечности исследуемых соединений без учета ОСН (рис. 5.28,6). Из рис. 5.28,6 видно, что ОСН оказывают существенное влияние на долговечность сварных соединений, причем это влияние тем больше, чем меньше уровень максимальных растягивающих напряжений в цикле.  [c.324]

Расчет тавровых соединений. При выполнении тавровых соединений без подготовки кромки соединяемых элементов (рис. 2.11) (сварка осуществляется угловым швом) условное напряжение при нагрузке силой F и изгибающим моментом М.  [c.29]

Большое значение имеет конструкция швов. Например, прочность при переменных нагрузках тавровых соединений со скосами кромок в связи с меньшей концентрацией напряжений в 1,5 раза выше, чем без разделки кромок. От постановки  [c.66]

При тавровом сечении (рис. УП.41, в) нейтральная ось сместится по направлению к полке, эпюра напряжений имеет вид, показанный на рис. VII.41, г.  [c.218]

Угловые (рис. 30.2, в) и тавровые (рис. 30.2, г) швы рассчитывают на срез по формуле (30.3). Допускаемые напряжения при статической нагрузке для сварных швов назначают в зависимости от допускаемого напряжения [а] для основного материала детали и в зависимости от материалов электродов. Например, при ручной  [c.367]

Для балок, материал которых неодинаково работает на растяжение и сжатие (например, чугун), целесообразно применять профили, не симметричные относительно нейтральной оси, например тавровый или П-образный. Так как у несимметричного профиля при изгибе возникают неодинаковые напряжения растяжения и сжатия, то сечение, например, чугунной балки выгодно располагать так, чтобы меньшие напряжения были в зоне растянутых, а большие — в зоне сжатых волокон (рис. 23.16).  [c.249]

Жестко заделанный нижним концом короткий брус таврового поперечного сечения нагружен сжимающими силами Р и 2Р. Определить значение параметра сил Р из условия, чтобы наибольшие напряжения не превышали на сжатие 100 МПа, на растяжение 40 МПа.  [c.199]

Балка пролетом /=2 л таврового сечения, показанного на рисунке, свободно лежит на двух опорах и нагружена силой Р посредине пролета. Исходя из теории расчета по допускаемым нагрузкам, определить грузоподъемность балки при допускаемом напряжении [сг] = 1600 г/сл.  [c.293]

Кроме концентрации нормальных напряжений при изгибе в не которых случаях приходится иметь дело с концентрацией касательных напряжений, в частности при поперечном изгибе уголковых, швеллерных, тавровых и двутавровых балок. В данном случае концентрация напряжений обусловливается резким изменением толщины элементов сечения балки в месте соединения полки со стенкой. Как показывают детальные исследования картины распределения касательных напряжений при изгибе, например в балке двутаврового сечения, фактическое распределение касательных напряжений не отвечает картине, приведенной на рис. 275, а, полученной на основании расчетов по формуле (10.20). По линии / — /, совпадающей с осью симметрии сечения, распределение касательных напряжений будет с достаточной точностью изображаться графиком рис. 275, б. По линии же 2—2, проходящей у самого края стенки, распределение напряжений в случае малого радиуса закругления в месте сопряжения стенки с полкой будет представляться кривой, показанной на рис. 275, в. Из этого графика видно, что в точках входящих углов сечения касательные напряжения теоретически достигают очень большой величины. На практике эти входящие углы скругляют, напряжения падают и их распределение в точках линии 2—2 примерно представляется кривой, приведенной на рис. 275, г.  [c.288]


Определим теперь такую ширину 2Х полки тавровой балки (рис. 135, а), чтобы равномерное распределение напряжения по поперечному сечению полки, показанному штриховкой, дало вычисленный выше момент М" (формула (п)). Это и будет эффективной шириной полки.  [c.276]

Определить наибольшую интенсивность нагрузки р, соответствующей предельному состоянию тавровой балки при напряжении <=2200 кГ см .  [c.122]

Определить коэффициент и, учитывающий неравномерность распределения касательных напряжений поперечного изгиба в выражении энергии от действия поперечной силы для таврового профиля с размерами, указанными на рисунке.  [c.171]

Для снижения остаточных напряжений в литых маховиках с четным числом спиц рекомендуется делать изогнутые СПИЦЫ, а с нечетным — прямые (рис. 4.21). Поперечные сечения спиц рекомендуется делать овальными, при больших нагрузках — дзу-таврового сечения, со скругленными острыми углами и сопряже-  [c.79]

Ребра условно можно представить как балки таврового или двутаврового сечения, полки которых в плане отмечены линиями 1—/ и II—II, проведенными посередине промежутка между вертикальными станками ребер. Полки таких условных ребер симметрично нагружены тангенциальными силами, возникающими в оболочке крышки под влиянием тангенциального момента Mi-В общем виде эти силы можно выразить через тангенциальные напряжения dT = Ot dF, где определяется по (IV. 107).  [c.132]

Расчет сварных швов при статическом нагружении. Материал сварного шва работает на растяжение (сжатие) в стыковых швах, либо на срез в угловых, тавровых и швах внахлестку. На прочность сварных швов оказывает влияние концентрация напряжений в местах усиления швов, нарушающая плавность силового потока, что учитывается при выборе допускаемых напряжений. Расчет на прочность стыкового шва (см. рис. 4.2, а) производится по формуле  [c.403]

Соединения внахлестку и тавровое технологичны, так как не требуют специальной подготовки кромок (разделки фасок) и могут неплохо работать при передаче статической силы, действующей вдоль шва. Если предположить, что эта сила вызывает равномерное напряжение сдвига в материале шва, то его легко рассчитать по соотношению  [c.376]

Влияние остаточных сварочных напряжений. Распределение остаточных сварочных напряжений в продольных, тавровых и пересекающихся сварных швах замеряли с помощью пружинных датчиков деформации полученные результаты графически представлены на рис. 6, а — в. Максимальное растягивающее напряжение было почти равным Сто,2 основного металла независимо от типа сварного соединения [5].  [c.133]

Балка таврового профиля длиною I > 1,4 м. защемлена одним концом, нагружена в вертикальной плоскости сосредоточенной силой F, приложенной на другом свободном конце консоли. Размеры сечения даны на рисунке в мм. Определить величину С1ШЫ F и значение наибольших сжимаюв х нацря-жений, если растягивающие напряжения в опасном сечении бяад = 42,4 МПа.  [c.69]

В опасном сечении балки таврового профиля определить в точках I, 2,2 .3,4 значения нормальных, касательных и главных напряжений к построить их эгаоры по высоте сечения. Размеры поперечного сечения даны в сантиметрах. Уг 11,5 см, h > 762 см , F - 40 кН, I - 2 м.  [c.76]

Траектории развития трещин в анализируемых сварных узлах представлены на рис. 5.8—5.11. Как следует из полученных данных, траектория трещины зависит от максимальных напряжений в цикле. Из рис. 5.8—5.11 видно, что во всех соединениях при небольших максмальных напряжениях в цикле (варианты № 1—3, 5—8, 11 —12) траектории трещин криволинейные, что обусловлено неоднородностью ОСН. С увеличением максимальных напряжений отклонение траекторий от направления, перпендикулярного поверхности листа, уменьшается. Наибольшее отклонение траектории трещины происходит в случае ненулевых напряжений в стенке таврового соединения, что моделирует, например, действие ребер жесткости на обшивку корпуса судна (варианты № 5, 7).  [c.318]

Тавровые и стыковые соединения (для всех образцов сечение рабочей части имеет размер 40 X 80 мм) испытывали при мягком нагружении (нагружение по напряжениям) с максимальными напряжениями, равными 125 и 250 МПа (0,125 и 0,25 ат ), при одном и том же размахе напряжений, равном 250 МПа (0,25 а ). Испытания проводили с частотой 5 Гц на испытательной машине фирмы S HEN K , имеющей гидравлические захваты, препятствующие повороту образца. Это обстоятельство было учтено соответствующей расчетной схемой при определении траектории трещины и КИН (см. рис. 5.26).  [c.323]

Во всех исследуемых соединениях — тавровом, стыковом, штуцерном — распределение собственных ОСН крайне неоднородно по толщине листа, что обусловлено спецификой температурных полей, возникающих при многопроходной сварке. В случае применения многопроходной сварки, выполняемой по методу отжигающего валика, структурные превращения практически не оказывают существенного влияния на ОСН в области сопряжения шва с основным металлом собственные ОСН для всех сварных узлов практически одинаковы и составляют примерно 0,8ат Е поперечном и (0,8-Ь 1,0) а в продольном направлениях. На основании исследования собственных ОСН в различных сварных узлах установлено, что источниками реактивных напряжений являюся те узлы, швы которых перерезают несущий элемент и образуют замкнутый контур.  [c.326]

Кархин В. А., Марголин Б. 3. Влияние сварочных напряженней на распространение усталостной трещины в тавровых соединениях//Тезисы докл. Всесоюзн. конф. по сварке в судостроении и судоремонте.— Владивосток, 1983 —С. 89—92,  [c.369]

В основе методов упругих решений лежит итерационный процесс уточнения дoпoлниfeльныx условий. С использованием этих принципов разработаны методы решения упругопластических задач для определения деформаций и напряжений при различных случаях сварки [4]. Решение задач этими методами осуществляется в численном виде на ЭВМ. Результаты решения позволяют анализировать как временные напряжения в процессе сварки, так и остаточные после сварки. Разработанные алгоритмы используют для решения одноосных задач (наплавка валика на кромку полосы, сварка встык узких пластин), задач плоского напряженного состояния (сварка встык широких пластин, сварка круговых швов на плоских и сферических элементах, сварка кольцевых швов на тонкостенных цилиндрических оболочках, сварка поясных швов в тавровых и других сварных соединениях), задач плоской деформации (многослойная сварка встык с  [c.418]


Пример 2.21. Проверить прочность чугунной консоли АВ (рис. 2.82, а) при указанном положении таврового сечения, если [Ор1 = 30 МПа, [ст,.] = 90МПа. Для опасного поперечного сечения балки построить эпюры нормальных напряжений.  [c.217]

Так как вблизи нейтральной оси материал мало напряжен, то выгодно больше материала располагать дальше от нейтральной оси. Поэтому в машиностроении редко применяют металлические балки прямоугольного сечения, но весьма широко распространены прокатные профильные балки таврового, двутаврового, углового, швеллерного и других сечений. Моменты инерции, моменты сопротивления и другие характеристики прокатных фасошшх профилей стандартных размеров даются в таблицах ГОСТа.  [c.249]

Консольная балка изготовлена из чугунной отливки таврового сечения. Проверить прочность балки, если сила Р=800 кГ, а длина консоли й=20 см. Допускаемое напряжение >1угуна на сжатие 1200 кГ1см , на растяжение 350 кГ1см  [c.106]

Подобрать тавровое сечение балки при допускаемых напряжениях [а] = 1400 и [т]=1100 кГ1см , если изгибающий  [c.111]

Основными элементами, образующими зубчатое колесо, являются зубья, обод, спицы или диск, ступица (втулка). Ободом называется часть колеса, соединяющая все его зубья в одно целое. Ступицей (втулкой) называется часть колеса, служащая для установки колеса на валу. Спицы и диск предназначены для соединения обода со ступицей, причем диск применяется преимущественно в колесах малого диаметра. Формы сечения обода и спицы различны. Наиболее распространенной формой сечения ободьев является тавровая, а спиц — крестообразная и эллиптическая. Зубья колес малого диаметра, у которых диаметр окружности впадин мало отличается от диаметра вала, нарезают на утолн енной части вала (рис. 16.8, а). Наоборот, колеса очень большого диаметра [d > 2000 мм) или колеса, у которых зубчатые венцы и центры должны быть сделаны из различных материалов, изготовляют со съемными зубчатыми венцами, скрепляя последние с центром колеса (рис. 16.8, д). Для снятия остаточных напряжений при отливке, удобства постановки на место и транспортировки очень большие колеса делают составными из двух половин, причем плоскость разъема колеса должна быть посередине двух диаметрально противоположных спиц и проходить между зубьями. Зубчатые колеса выполняют литыми, коваными, штампованными, сварными. Расчет почти всех размеров элементов зубчатых колес со спицами (рис. 16.8, г) производится по эмпирическим формулам. Ширина обода Ь = - d. Толщина обода  [c.315]

Контурными диафрагмами являются железобетонные предварительно напряженные безргскосные цельные фермы. Верхний пояс 18-метровой фермы п.меет тавровое сечение с полками внизу и с петлевыми выпусками ар.матуры на его верхней грани. Оболочка с фермой соединяется омоноличиванием выпусков арматуры из панелей и из верхнего пояса диафрагмы. Верхний пояс 24-метровой фермы имеет прямоугольное сечение и выполняется без выпусков арматуры. Соединение оболочки с этой диафрагмой осуществляется приваркой выпусков арматуры диаметром 20 мм из среднего килевого ребра к закладным деталям верхнего пояса фермы и укладкой арматурных стержней диаметром 10 мм в швах между плитами, примыкающими с двух сторон к диафрагме, к верхнему поясу стержни крепятся при помощи анкера.  [c.67]


Смотреть страницы где упоминается термин Напряжения тавровые : [c.252]    [c.320]    [c.269]    [c.541]    [c.212]    [c.310]    [c.404]    [c.225]    [c.134]    [c.164]    [c.374]   
Машиностроение Энциклопедический справочник Раздел 1 Том 2 (1948) -- [ c.156 ]



ПОИСК



Деформации и напряжения в стыковых и тавровых соединениях

Деформации и напряжения при сварке стыковых и тавровых соединений

Касательное напряжение 163, 344, — — в тавровых балках 295,ие может пересекать свободную от нагрузки поверхность тела

Напряжение тавровых соединениях

Распределение напряжений в крестообразном соединении тавровых соединениях



© 2025 Mash-xxl.info Реклама на сайте