Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейные Метод Римана

Уравнения годографа линейны, что и является основным их преимуществом, в отличие от нелинейных уравнений (4.71) в физической плоскости. Ввиду линейности уравнений к ним могут быть применены известные общие методы построения решений. Однако не будем здесь рассматривать некоторые точные решения, а остановимся только на приближенном методе, также предложенном С. А. Чаплыгиным. Прежде всего отметим, что для несжимаемой жидкости (М = О, р = 1) уравнения годографа (4.77) являются соотношениями Коши—Римана, записанными в полярной системе координат  [c.79]


Таким образом, потребности развивающейся новой техники поставили уже в 40-х годах нашего столетия задачу об эффективных способах нахождения решений систем нелинейных уравнений с частными производными с учетом реальных свойств веществ и геометрии проектируемых изделий. Известные ранее аналитические методы решения отдельных типов линейных уравнений (создание их связано с именами Фурье, Адама ра, Римана, Лежандра и других известных математиков) и некоторых нелинейных систем обыкновенных дифференциальных уравнений (Пуанкаре, Ляпунов и другие) не могли дать решения поставленных задач. Численные же методы, которые также успешно при менялись для решения отдельных задач еще в прошлом веке (Гаусс, Леверье и другие), не могли быть эффективно реализованы до появления хороших счетных машин. Конец 40 х годов и все последующие десятилетия проходили под знаменем бурного прогресса средств вычислительной техники. Первое время рост возможностей электронно-вычислительных машин, в первую очередь их быстродействия и памяти, выдвинул тезис о том, что с помощью достаточно мощных ЭВМ, с использованием сугубо численных методов (прежде всего разностных методов и методов прямого статистического моделирования) можно эффективно получить решение практически всех возникающих в приложениях задач без детального, аккуратного в математическом смысле исследования свойств применяемых математических моделей.  [c.13]

Г. П. Черепанов [362], развивая эти методы, дал решение одной линейной краевой задачи Римана для двух функций. В качестве приложения им получено в замкнутом виде решение смешанной задачи для пластинки с конечным числом разрезов вдоль действительной оси, на-  [c.19]

Простые волны, образующиеся таким образом, как указано выше, или как-либо иначе, можно найти аналитически, используя стандартные методы части I. Один инвариант Римана всюду постоянен, а модулируемые переменные ы, к, а остаются постоянными вдоль каждой характеристики из соответствующего семейства. В линейной теории к остается постоянным, но а сл вдоль характеристик. Это различие между нелинейным и линейным поведениями, вероятно, не так легко уловимо, как групповое расщепление, и может частично маскироваться эффектами высшего порядка.  [c.500]

Метод Римана. Итак, требуется найти решение уравнения (52) в прямоугольнике PMQR, если значения решения заданы на двух его сторонах — характеристиках этого уравнения значения (53) на характеристике МР и значения (54) на характеристике MQ. Следовательно, задача свелась к задаче Гурса для линейного уравнения (52). Решение этой краевой задачи следует из общей теории линейных уравнений второго порядка гиперболического типа и может быть получено, например, методом Римана, ссли для уравнения (52) известна функция Римана.  [c.165]


Основное внимание уделено изучению развитых кавитационных течений при использовании методов нели]гейной и линейной теорий. Рассматривается решение задач о нестационарных кавитационных течениях методом потенциала ускорения. Показано, что многие задачи о стационарных и нестационарных кавитационных течениях сводятся к задаче Римана — Гильберта для полуплоскости и успешно решаются с помощью формулы Келдыша —Седова.  [c.2]

Спецкурс Избранные вопросы теории колебаний и волн в распределенных системах знакомит студентов с современными достижениями теории волн применительно к динамике распредепенных упругих систем. В курсе изучаются колебания периодических структур, составленных из различных комбинаций реологических элементов Гука и Юма. Осуществляется предельный переход к распределенным системам. С помощью вариационного метода строятся модели упругих колебаний стерж1 сй и пластин. Рассматриваются кинематические и динамические характеристики волнового процесса, выводятся уравнения переноса энергии и импульса. Методом стационарной фазы из)Д1а-ется асимптотическое поведение волн в линейных средах. Вводится понятие дисперсии фазовой и групповой скоростей. Рассматривается нелинейная эволюция волн Римана, ударных волн и солитонов. Изучаются также волновые процессы в системах с нестационарными и движущими границами.  [c.12]

Исследуется устойчивость течения невязкого и нетенлонроводного газа в канале с замыкающим скачком уплотнения. Граничное условие на выходе из канала задается в виде линейной связи между нестационарным возмущением левого инварианта Римана, характеризующего отраженную акустическую волну, и возмущениями правого инварианта Римана и энтропийной функции, приходящими к сечению выхода со стороны канала. Строится область устойчивости в плоскости коэффициентов отражения. Анализ основывается на методе В-разбиения"[1, 2] и на использовании условий устойчивости, полученных в [3] для случая, когда один из коэффициентов отражения равен нулю. Исследование выполнено в квазицилиндрическом " приближении.  [c.620]

Фундаментальную роль в развитии современной газодинамики сыграла диссертация С. А. Чаплыгина О газовых струях , представленная к защите на соискание ученой степени доктора в 1902 г. Прошло тридцать лет, прежде чем это замечательное исследование обратило на себя всеобщее внимание, а в 1935 г. на конгрессе в честь Вольта в Риме получило достойную оценку со стороны таких крупных аэродинамиков, как Прандтль, Карман и Тэйлор. Работа Чаплыгина послужила мощным толчком к развитию современных методов газовой динамики до- и сверхзвуковых скоростей как у нас в Советском Союзе, так и за рубежом. Причиной этого явилась плодотворность применения идеи Чаплыгина интегрирования уравнений газовой динамики методом перехода от физической плоскости течения в плоскость годографа скоростей, где нелинейные уравнения газодинамики становятся линейными, и предложенного им приема приближенной замены адиабаты касательной к ней в некоторой ее точке.  [c.35]

Понятия о колебательных движениях и волнах сформулировались в начале XIX в. В то время получены линейные решения уравнений теоретической механики и гидродинамики, описывающие движения планет и волн на воде. Несколько позднее благодаря наблюдательности Д. С. Рассела [186], теоретическим исследованиям Б. Римана [97, 99] и других исследователей сформировалось понятие о нелинейных волнах. Однако, если линейные колебания и волны были весьма полно изучены в XIX в., что нашло отражение в фундаментальном курсе Д. Рэлея [177], то этого нельзя сказать о нелинейных колебаниях. Сознание того, что нелинейные уравнения содержат в себе качественно новую информацию об окружающем мире пришло после разработки А. Пуанкаре новых методов их изучения. Созданные им и другими исследователями методы интегрирования нелинейных уравнений нашли широкое применение в радиофизике [6] и механике твердых тел [73]. Более медленно нелинейные понятия и подходы входили в механику жидкости и твердого деформируемого тела. Показательно, что первые монографии, посвященные нелинейному поведению деформируемых систем, были опубликованы на-рубеже первой половины XX в. [39, 72, 107, 153]. В это же время резко возрос интерес к нелинейным колебаниям и волнам в различных сплошных средах. Сформировались нелинейная оптика, нелинейная акустика [97, 173], теория ударных волн [9, 198] и другие нелинейные науки [184, 195, 207]. В них рассматриваются обычно закономерности формоизменения волн, взаимодействия их друг с другом и физическими полями в безграничных средах. Нелинейные волны в ограниченных средах исследованы в значительно меньшей степени, несмотря на то что они интересны для приложений. В последнем случае важнейшее значение приобретает проблема формирования волн в среде в результате силового, кинематического, теплового или ударного нагружения ее границ. Сложность проблемы связана с необходимостью учета физических явлений, которые обычно не проявляют себя вдали от границ, таких как плавление, испарение и разрушение среды, а также взаимодействия соприкасающихся сред. В монографии рассмотрен широкий круг задач генерации и распространения нелинейных волн давления, деформаций, напряжений в ограниченных неоднородных сплошных средах. Большое внимание уделено динамическому разрушению и испарению жидких и твердых сред вблизи границ, модельным построениям для адекватного математического описания этих процессов. Анализируется влияние на них взаимодействия соприкасающихся сред, а также механических и тепловых явлений, происходящих в объемах, прилегающих к границам.  [c.3]


В работе Д. В. Грилицкого [99] рассмотрена контактная задача второго типа для ортотропной плоскости с круговым отверстием на одной дуге отверстия заданы компоненты перемещения м и и, а на остальной части — нулевые напряжения. Методы решения этой задачи и задачи об анизотропной полуплоскости, жестко связанной со штампом, упомянутой в конце 3, схожи между собой. В задаче о круговом отверстии совершается переход к полярным координатам, после чего производные перемещений по полярному углу ф выражаются через напряжения Тгф на участке контакта по формулам типа (6.13). Использование граничных условий приводит к системе двух краевых задач Римана — Гильберта с переменными коэффициентами. Эта система разбивается на две независимые задачи линейного сопряжения, решение которых удается получить в явном виде.  [c.157]

После изложеиия важных основных результатов линейной теории, необходимых для понимания волновых процессов вообще, можно было бы заполнить целые тома описанием решений методов и исследования частных задач. Такая цель в зтой книге не ставится. В нее включен основной материал по линейным волнам, но все же предполагается, что читатель в известной мере знаком с линейной теорией, и главное внимание уделяется более сложной нелинейной теории. В изучении нелинейных волн, начавшемся сто с лишним лет тому назад с основополагающих работ Стокса [2] и Римана [1] и развивавшемся с нарастающей скоростью, в последние годы были достигнуты значительные результаты. Наша цель — дать единый подход ко всему накопившемуся материалу.  [c.7]


Смотреть страницы где упоминается термин Линейные Метод Римана : [c.448]    [c.302]    [c.123]    [c.321]    [c.123]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.245 ]



ПОИСК



Метод Римана

Методы линейного

Риман



© 2025 Mash-xxl.info Реклама на сайте