Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сингулярные грани

Сингулярными называются атомно-гладкие грани, не имеющие никаких ступеней (рис. 4.24). Например, грань (100) у простой кубической решетки, грань (111) у алмазоподобной решетки. Сингулярные грани по сравнению с другими обладают наименьшей свободной поверхностной энергией, наибольшей ретикулярной плотностью (плотностью упаковки атомов) и характеризуются малыми индексами Миллера.  [c.183]

Однако в реальных условиях прерывистый рост сингулярных граней кристалла наблюдается редко. Тот факт, что кристаллы в большинстве случаев растут с измеримыми скоростями даже при очень малых пересыщениях, привел Франка к заключению, что такие кристаллы имеют на поверхности роста постоянно действующий источник ступеней, в ка-  [c.185]


Действительно, морфология растущей грани и, соответственно, форма кристалла определяется как поверхностной кинетикой роста, так и условиями переноса (тепла и массы) в соприкасающихся фазах (питающей среды и кристалла). С увеличением размеров растущих граней кристалла изменяются условия тепло- и массопередачи, что приводит к неоднородности пересыщения (переохлаждения) у растущей грани и способствует нарущению ее плоской формы. В этих условиях флуктуационное появление на грани небольших искажений усиливает неоднородность процессов переноса и еще больше искажает форму растущего кристалла. Однако кинетические явления на растущей поверхности выступают в качестве факторов, стабилизирующих плоскую форму грани. Это связано с тем, что при образовании выступа или впадины на сингулярной грани появляются боковые поверхности, которые растут с большими скоростями, чем сингулярные. Это приводит к сглаживанию формы грани.  [c.188]

Сингулярные грани, 183 Скорость образования центров новой фазы, 176 Скрытая теплота кристаллизации, 142 Соединения, 74 Степень ионности связи, 60  [c.371]

Теперь мы можем вернуться к той простейшей теории пластичности, с рассмотрения которой мы начали 16.1. При изучении границ применимости деформационной теории и при анализе простейшей модели мы встретились с такой ситуацией, когда начальная поверхность нагружения была гладкой, а последующие поверхности становятся сингулярными, коническая точка появляется в точке нагружения и следует за нею по пути нагружения. Сейчас речь будет идти об особенностях другого рода. Начальная поверхность нагружения может состоять из частей нескольких гладких поверхностей, образующих при пересечении ребра. Простейший пример, рассмотренный в 16.1, ато призма Сен-Венана, ограниченная шестью гранями. Эта призма в процессе деформации может расширяться с сохранением подобия в этом случае следует говорить об изотропном упрочнении, а может переноситься параллельно без изменения размеров в случае трансляционного упрочнения. При выводе формул  [c.554]

Из свойства выпуклости предельной поверхности естественно вытекает ее свойство непрерывности [31]. При этом в общем случае предельная поверхность может быть как регулярной (гладкой), так и сингулярной (имеющей ребра, грани).  [c.98]

Несингулярные грани составляют достаточно большие углы с сингулярными и имеют высокую концентрацию ступеней (рис. 4.24). Эти грани обладают наибольшей поверхностной энергией.  [c.184]


По мере движения ступени и излома происходит застройка плоскости кристалла. Для дальнейшего роста необходимо образование двумерного зародыша, для чего требуются уже значительные пересыщения. Время ожидания (вероятность) такой флуктуации будет больше (меньше), чем время (вероятность), необходимое для образования изломов на ступенях. Поэтому согласно теории Косселя-Странского-Фольмера сингулярные грани должны расти прерывистым образом, и для их роста необходимо критическое пересыщение, которое обеспечивало бы образование двумерных зародышей.  [c.185]

Если поверхность гладкая, то изломы существуют только па ступенях, рост идет последоват, отложением слоев и наз. послойным. Если поверхность образована лестницей одинаковых ступеней и в среднем отклоиена от ближайшей сингулярио11 грани на угол с тангенсом р, то ср. скорость её роста вдоль нормали к этой сингулярной ориентации  [c.499]

Из-за большой скорости поверхностных процессов К. переохлаждение А Г на атомно-шероховатых поверхностях мало, т. е. Т=Т (отсюда назв. изотермы). Плотпоупакованные грани с простыми индексами в случае неметаллов часто остаются сингулярными и появляются на округлом фронте К. в виде плоо-  [c.500]

Возвращаясь к конечным элементам, заметим, что они в процессе исследования трещин предлагают специальные возможности. Наиболее явная заключается в наличии так называемых специальных элементов, размещаемых в вершине трещины или надреза, с помощью которых ожидаемое сингулярное поведение в вершине трещины встраивается в функции формы [Л ] элемента (см., например, Бысков [57] и Уилсон [58], где рассматриваются ранние этапы этого подхода, и Сведлоу [44], где описан усовершенствованный вариант). Альтернативный подход заключается в использовании четырехугольных элементов [59,60], в которых для моделирования сингулярности узлы, расположенные в центре грани, смещаются на четверть стороны или же имеет место вырождение некоторых угловых узлов, благодаря чему устраняется необходимость в специальных элементах.  [c.347]

В. М. Александров и А. С. Соловьев [3] задачу включения для бесконечной полосы решают применительно к проблеме тензомет-рировайия. Между поверхностью полосы и накладки (тензодатчи-ка) имеется упругий слой клея малой толщины. Предварительно с позиции плоской теории упругости рассматривается вспомогательная задача о растяжении двухслойной пластины (тензодатчик и клеевая прослойка) произвольной самоуравновешенной касательной нагрузкой, приложенной к одной из ее граней. Затем из уело ВИЙ полного сцепления клея с полосой строится сингулярное интегральное уравнение для определения касательных усилий взаимодействия на границе полоса—клей. Это уравнение регуляризует-ся и решается методом последовательных приближений.  [c.126]

В 3.1 в декартовой системе координат рассмотрены контактные задачи Q, Q2 и Q3 для прямоугольника о вертикальном воздействии штампа без трения на одну из его граней, смежные грани находятся в условиях скользящей заделки. В задачах Q и Q2 противоположная грань соответственно лежит без трения на жестком основании или жестко защемлена, а штамп расположен симметрично. Эти задачи исследуются с помощью методов сведения парных рядов-уравне-ний к БСЛАУ первого рода с сингулярной матрицей коэффициентов и асимптотическим методом больших Л. В задаче Q3 штамп расположен несимметрично и для исследования использован метод однородных решений. Произведен расчет контактных напряжений и жесткости системы штамп-прямоугольник. Здесь также как и для задачи Сз обнаружена аналогичная немонотонная зависимость жесткости системы штамп-прямоугольник относительного расстояния боковой грани от края штампа, при этом немонотонность более ярко выражена при больших значениях коэффициента Пуассона. Также показано, что влияние боковой грани затухает обратно пропорционально величине этого расстояния для задачи Q и по экспоненциальному закону для задачи Q2.  [c.15]

Методом сведения парных рядов-уравнений к БСЛАУ первого рода с сингулярной матрицей коэффициентов рассмотрена задача Qs для кольцевого сектора, когда штамп несимметрично вдавливается в цилиндрическую поверхность. По постановке задача аналогична задаче (5з для прямоугольника. Методом однородных решений исследована аналогичная симметричная задача Qe для кольцевого сектора. Произведен расчет контактных напряжений и жесткости системы штамп-кол ьцевой сектор. Здесь также, как и для задач (7з, Q и Q2, обнаружена аналогичная немонотонная зависимость жесткости системы штамп-прямоугольник от относительного расстояния боковой грани от края штампа. Кроме того для задачи Qs показано, что возможно такое несимметричное расположение штампа, когда момент контактных напряжений под штампом будет равен нулю.  [c.16]


Отметим, что в работах [13, 57] и др. также рассматривалась осесимметричная задача о кручении штампом кругового цилиндра конечных размеров (задача 4). Штамп жестко сцеплен с одной плоской гранью цилиндра, другая его плоская грань неподвижна, а на цилиндрической поверхности заданы условия отсутствия перемещ,ений или напряжений. Для исследования были использованы изложенные выше методы метод сведения парного ряда к БСЛАУ первого рода с сингулярной матрицей коэффициентов и метод однородных решений. Эти задачи имеют самостоятельный интерес и в то же время их можно рассматривать как модельные для проверки эффективности предложенных методов. Расчеты показали высокую эффективность предложенных методов и в совокупности позволили полностью их исследовать при всех значениях параметров.  [c.167]

На смежных гранях прямоугольника заданы условия отсутствия нормальных перемещений и касательных напряжений. Для описания свойств упругого тела используется модель нелинейного несжимаемого материала [70]. Как это было сделано в задачах 6 и 8 для предварительно напряженных цилиндров, здесь задача сведена к парному ряду-уравнению по тригонометрическим функциям, для решения которого также используется метод сведения его к БСЛАУ с сингулярной матрицей. После регуляризации системы найдено ее решение и проведен численный анализ задачи в зависимости от ее параметров. Расчеты проводились для материалов Муни и Бартенева-Хазановича и отражены в таблицах и графиках [46].  [c.173]

В решение плоских контактных задач для упругого клина значительный вклад внес В. ]У[. Александров с соавторами [2, 8]. Ими рассмотрены задачи о плоской деформации бесконечного упругого клина, в одну грань которого без учета сил трения вдавливается плоский, наклонный или параболический жесткий штамп, а на другой грани выполняется одно из следующих условий отсутствие напряжений, скользящая или жесткая заделка. Для решения интегральных уравнений в этих работах развиваются регулярный и сингулярный асимптотические методы (в зависимости от значения основного безразмерного параметра, характеризующего относительную удаленность области контакта от вершины клина), метод получения точного решения интегрального уравнения после специальной аппроксимации функции-символа ядра, другие методы. Получены решения, ограниченные на одном или на обоих краях области контакта, соответственно для наклонного или параболического штампов. Аналогичная задача с неизвестной областью контакта в случае параболического штампа изучалась в работе В. И. Короткина, И. А. Лубягина и М. И. Чебакова [35] с использованием специальной аппроксимации символа ядра интегрального уравнения. Сделаны расчеты применительно к плоским зубчатым зацеплениям.  [c.190]

Любое фазовое превращение включает в себя не только образование зародышей новой фазы, но и их рост. С точки зрения термодинамики рост образовавшихся флуктуационным путем кристаллических зародышей должен происходить при сколь угодно малых пересыщениях в исходной фазе (случай полного смачивания). Однако многочисленные экспериментальные исследования показывают, что при заданном пересыщении скорость роста грани кристалла зависит от ряда других, кроме пересыщения, факторов, и прежде всего, от морфологии поверхности растущей грани кристалла. Поверхности граней идеальных кристаллов по своему атомному строению принято подразделять на три типа сингулярные, ви-цинальные и несингулярные.  [c.183]

Послойный рост осуществляется на сингулярных и вицинальных гранях. Основоположниками теории послойного роста являются Коссель, Странский и Фольмер. Согласно их теории атом, попадающий на поверхность растущего идеального кристалла, наиболее прочно связывается в изломе ступени (рис. 4.25, поз. 3), так как в этой позиции атом образует связи с тремя из шести ближайших соседей. На самой ступени (рис. 4.25, поз. 2) связи образуются лишь с двумя, а на гладкой поверхности (рис. 4.25, поз. /) только с одним из шести соседей. Атом, попадающий из внешней фазы на поверхность кристалла, отдает часть своей энергии решетке и, попадая в поле действия сил связи поверхностных атомов кристалла, переходит в адсорбированное состояние. Как правило, адсорбированные атомы обладают еще достаточным запасом энергии, чтобы передвигаться по поверхности кристаллов. Их средний миграционный путь составляет несколько сотен межатомных расстояний. Следовательно, хотя вероятность попадания атома из внешней фазы в изломы на ступеньках мала, атомы достигают изломов путем поверхностной диффузии сначала к ступенькам, и далее, передвигаясь вдоль них до из-  [c.184]

Пусть рост кристалла из газовой фазы в основном происходит по слоистому или слоисто-спиральному механизмам. В этом случае источниками ступеней на растущих сингулярных (вицинальных) гранях могут быть винтовые дислокации. Ступень, образованная винтовой дислокацией, при встраивании в нее частиц закручивается в спираль, и образующиеся последовательные витки формируют эшелон ступеней. На растущей поверхности при этом возникают пирамиды (рис. 4.27), причем концентрация ступеней, образующих эти пирамиды, велика и практически не зависит от количества винтовых дислокаций, выходящих на поверхность роста. На поверхности кристалла, контактирующего с питающей средой, присутствуют адсорбированные частицы того же вещества, из которого состоит кристалл. Адсорбированные частицы совершают тепловые колебания в трех направлениях — перпендикулярно плоскости и в двух параллельных плоскости. Флуктуации энергии при колебаниях первого типа приводят к отрыву частиц от поверхности и переходу их в газовую среду (испарение). Колебания второго типа создают условия для диффузионной миграции этих частиц по поверхности. Если над растущей поверхностью создается пересыщение, то начинается диффузия в окружающей среде и адсорбированном слое по направлению к ступени, на которой будет идти конденсация до тех пор, пока это пересыщение не  [c.187]


Механизм роста кристаллической грани определяется главным образом ее строением, как и в случае роста кристаллов из газообразной фазы (см. гл. 4). Атомно-щероховатые (несингулярные) поверхности растут по нормальному механизму. В этом случае плотность центров роста сопоставима с плотностью поверхностных атомов и, как показывают расчеты для случая роста кристаллов из расплава, скорость роста поверхности пропорциональна переохлаждению на фронте кристаллизации у АТ). Атомно-гладкие (сингулярные и вицинальные) поверхности растут по слоистому механизму при двухмерном зарождении ступеней роста V АТ ехр(— ДГ)) и по слоисто-спиральному механизму с участием винтовых дислокаций V (Д7 ) ). Анализ процессов роста кристаллов из раствора показывает, что в этом случае, так же как и в случае роста кристаллов из газообразной фазы (см. ниже), при малых пересыщениях зависимость скорости роста поверхности по слоисто-спи-ральному механизму от пересыщения близка к параболической, а при больщих пересыщениях становится линейной.  [c.220]


Смотреть страницы где упоминается термин Сингулярные грани : [c.499]    [c.183]    [c.187]    [c.498]    [c.134]    [c.404]   
Основы материаловедения и технологии полупроводников (2002) -- [ c.183 ]



ПОИСК



Гранит

Сингулярность



© 2025 Mash-xxl.info Реклама на сайте