Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полупроводниковые соединения структурой

Методами Э. были определены мн. атомные структуры, уточнены и дополнены рентгеноструктурные данные для большого числа веществ, в т. ч. мн. цепных и циклич. углеводородов, в к-рых впервые были локализованы атомы водорода, нитридов переходных металлов (Fe. Сг, Ni. W), обширного класса оксидов Nb. V, Та с локализацией атомов N и О, а также 2- и 3-компонентных полупроводниковых соединений, глинистых минералов и слоистых структур. При помощи Э. исследуют и структуру дефектных кристаллов. В комплексе с электронной микроскопией Э. позволяет изучать фазовый состав и степень совершенства структуры тонких кристаллич. плёнок, используемых в разл. областях совр. техники. Для процессов эпитаксии существенным является контроль степени совершенства поверхности подложки до нанесения плёнок.  [c.585]


Эпитаксиальные структуры полупроводниковых соединений  [c.93]

Лазерная технология. Под лазерной технологией подразумевается обработка различных материалов излучением лазера. С пск мощью лазерных технологических установок производятся термообработка, оварка, испарение и получение отверстий, а также отжиг больших интегральных схем и эпитаксия полупроводниковых соединений. Преимуществом обработки лазерным лучом является бесконтактный ввод энергии в зону обработки, а также локальность воздействия на материал благодаря малому диаметру зоны, облучения. Это позволяет проводить операции с высокой точностью без деформации и изменения структуры материала и за более короткое время.  [c.124]

Полупроводниковые соединения характеризуются определенной структурой и химическими связями. Поэтому каждому типу термоэлектрического материала соответствует определенный интервал рабочих температур. Исходя из этого термоэлектрические  [c.56]

Сплавы составляют большую группу двойных и многокомпонентных систем, при этом компонентами могут быть отдельные элементы и их химические соединения (металлы, неметаллы, полупроводниковые соединения, оксиды, соли). Однофазная система может быть однородным твердым раствором либо химическим соединением. Сплавы, состоящие из двух и более фаз, имеют микронеоднородную структуру и представляют собою механическую смесь исходных компонентов, их твердых растворов или химических соединений.  [c.73]

Из металловедения хорошо известно, что кристаллические интерметаллические соединения с ковалентными и ионными связями имеют тенденцию образовываться, если по меньшей мере один из элементов принадлежит к группе IVB или к более дальним группам периодической системы элементов ([137], гл. 4). Это следует из химического принципа, согласно которому предпочтительно образуются такие соединения, в которых один из элементов имеет почти заполненную оболочку валентных электронов. Очевидно, что химические составы жидких полупроводников согласуются с этим принципом. Теория химических связей полупроводниковых соединений Мозера и Пирсона [178] представляет собой более детальное изложение указанного принципа. Основное отличие жидких полупроводников состоит в том, что в жидкой фазе может существовать больше различных молекулярных структур, чем в кристалле, поэтому ограничения стехиометрии, соответствующие правилам Мозера и Пирсона, в этом случае не могут применяться строго.  [c.49]


Иоффе и Регель [144] исследовали случаи, когда плотность полупроводников увеличивается при плавлении, и установили связь увеличения г с переходом от полупроводниковых к металлическим свойствам. Такие явления наблюдались в случае германия, кремния и некоторых полупроводниковых соединений элементов групп 1П—V (табл. 2.1). В случае теллура и разбавленных растворов селена в теллуре при плавлении объем увеличивается но выше точки плавления существует область увеличения плотности, как показано на рис. 3.2. Следует отметить, что существование максимума плотности в этих сплавах подвергалось сомнению [165, 248], но было подтверждено в более поздней работе [217]. Электропроводность увеличивается при плавлении и при дальнейшем нагревании, что отражает тенденцию к металлическому поведению. Это означает, что г увеличивается при обоих процессах, но при плавлении увеличение межатомного расстояния (главным образом, между цепочками упорядоченной структуры твердого тела) вызывает чистое увеличение объема. Более подробное обсуждение структуры жидкого теллура проведено в последующих параграфах.  [c.53]

Уже на заре развития полупроводниковой электроники остро встал вопрос о возможности использования оксидных пленок не только для пассивирования свойств поверхности, но и в качестве изолирующего слоя в планарных приборах. При этом необходимо было добиться минимальной плотности поверхностных электронных состояний на границе полупроводника с его собственным окислом. Экзамен выдержала структура 81-8102 — кремний, покрытый его собственным окислом. До сих пор система 81-8102 является сердцем современной микроэлектроники. Менее совершенна система Ое-ОеО . Однако, благодаря ряду преимуществ, она часто используется как модельная для изучения электронных явлений на поверхности. Состав и структура оксидных поверхностных фаз в многокомпонентных полупроводниковых соединениях неизмеримо более сложны, что является серьезным препятствием для изучения их электрофизических свойств. Технология синтеза оксидных слоев на многих практически важных соединениях и Л В еще не позволяет достичь уровня  [c.121]

Волноводные структуры на основе полупроводниковых соединений 168  [c.18]

Чтобы определить требования к материалам для полупроводниковых оптических источников и детекторов, придется затронуть теорию полупроводников и полупроводниковых соединений, а также рассмотреть конструкции некоторых типичных приборов, В конце этой главы будут приведены общие свойства оптических источников и детекторов. В гл. 8 будут обсуждены физические механизмы генерации оптического излучения, а в гл. 9 описана структура типичных полупроводниковых диодов, имеющих высокий коэффициент полезного действия в режиме непрерывно работающего при комнатной температуре полупроводникового лазера. Работа полупроводниковых лазеров рассматривается в гл, 10 и 11. Наконец, в гл, 12 и 13 будет рассмотрена работа р-1-п- и лавинных детекторов.  [c.191]

О полупроводниковых свойствах халькогенидов редкоземельных элементов — см. [62]. Полупроводниковыми свойствами обладает соединение UO2, кристаллизующееся в кубической структуре с а = 0,546 нм [1], g=l,3 эВ [87]. цр=10 см /(В-с) [249].  [c.500]

Материалы для полупроводниковой технологии предназначены для создания в твердом теле или на его поверхности микрообластей с различным характером проводимости, проводящих и изоляционных областей, контактных слоев. Полупроводниковая технология использует часть основных и вспомогательных материалов, с помощью которых создаются контактные площадки, проводниковые соединения. В связи с микроскопическими размерами полупроводниковых схем в них фактически не используются емкостные элементы на основе структур металл—диэлектрик—металл, хотя создание их на полупроводнике не представляет значительных трудно-  [c.411]

Экспериментально обнаружены переходы нек-рых диэлектриков в полупроводники и фазы с металлич. проводимостью. В последних исчезает энергетич. щель между валентной зоной и зоной проводимости. В одних вeн e твax металлизация происходит путём фазового перехода с резким скачкообразным изменением кристаллич. структуры и физ. свойств (напр., в Ge, Si и мн. полупроводниковых соединениях типа АП1 В и АН BVI), в других — изменение зонной структуры, электрич. свойств и кристаллич. структуры происходит  [c.550]


По структуре П. м. делятся на кристаллические, аморфные, жидкие. Ряд органич. веществ также проявляет полупроводниковые свойства и составляет обширную группу органических полупроводников. Наиб, значение имеют веорганич. кристаллич. П. м., к-рые по хим. составу разделяются на элементарные, двойные, тройные и четверные хим. соединения, растворы и сп.т1авы- Полупроводниковые соединения классифицируют по номерам групп перподич. табл, элементов, к к-рым принадлежат входящие в их состав элементы.  [c.44]

Ф, с сильным внутр. электрич. полем представляют собой полупроводниковые структуры с выпрямляющими контактами полупроводник—металл и гетеропереходами (см. также Контактные явления в полупроводниках). В таких Ф. свет возбуждает электроны в зону проводимости ниже уровня вакуума, а дополнительную энергию, необходимую для выхода в вакуум, фотоэлектроны приобретают в сильном электрич. поле внутри полупроводника. Длинноволновая граница таких Ф. определяется шириной запрещённой зоны полупроводника (Хо[мкм]я = l,24/ < j [эВ]). Ф. с выпрямляющим контактом полупроводник — металл изготавливаются на основе полупроводниковых соединений /i-InGaAs и -InGaAsP и представляют собой эпитаксиальные слои таких полупроводников, на поверхность к-рых наносится тонкая ( 10 нм) плёнка Ag. Работа выхода Ag снижается адсорбцией цезия и кислорода до величины а 1,1 эВ, Такие Ф. работают при включении на контакт внеш. напряжения в обратном направлении (плюс , на Ag) V=2—5 В. Фотоэлектроны, возбуждённые светом в зону проводимости, разогреваются. в сильном электрич. поле контакта и выходят в вакуум сквозь плёнку Ag, Ф. на основе InGaAs с 0,75 эВ имеют порог чувствительности /(-о 1,7 мкм, а квантовый выход достигает 10" —10 электрон/фотон при ).< 1,6 мкм.  [c.349]

Зонная структура GaAs и нек-рых др, полупроводниковых соединений типа А" В такова, что при освещении их светом с круговой поляризацией возбуждённые электроны в зоне проводимости оказываются поляризованными по спину, причём степень поляризации составляет 50%. В случае ОЭС такие электроны могут выйти в вакуум, образуя пучок спин-поляризованных электронов. Степень поляризации электронов, эмитированных из GaAs с ОЭС, достигает 40- 49%.  [c.366]

Во мн. случаях реализуется промежуточный случай Ц. с. ср. радиуса, представляющий наиб, трудности ДJ я вден-тификации их строения и теоретич, расчётов энергетич. структуры. Такого типа центры образуются, напр., в типичных кристаллофосфорах на основе широкозонных полупроводниковых соединений группы АП BV (напр., ZnS), легированных ионами тяжёлых металлов (Ag, Си, Аи). В состав этих центров могут входить собств. дефекты кристаллич, структуры и соактивирующие примеси, образующие в нек-рых случаях донорно-акцепторные пары. Для формирования определ. Ц. с. требуется строго выдерживать заданные условия синтеза (темп-ру и длительность прокалки, скорость охлаждения, вакуумирование или давление активирующих паров и т. д.).  [c.426]

ЭЛЕКТРОННО-ИОННАЯ ЭМИССИЯ—испускание ионов поверхностью твёрдого тела при её облучении потоками электронов. Бомбардировка электронами с энергией до неск. кэВ и плотностью тока электронов до 10 А/см не изменяет атомную структуру поверхности, следовательно, не приводит к эмиссии атомов или ионов. Исключение составляют нек-рые диэлектрич. и полупроводниковые соединения с Поляризованной связью атомов. Однако и для металлов энергии электронов достаточно для разрыва связей между поверхностными атомами и частицами (атомами, молекулами), адсорбированными на поверхности (см. Адсорбция). Эксперим. определение кол-ва и состава частиц, десорбированных с поверхности материала под воздействием медленных электронов (10—1()00 эВ), лежит в основе метода электронно-стимулированной десорбции ионов (ЭСДИ),  [c.559]

Технология прямого соединения пластин открывает реальные возможности и для создания сложных приборных структур с участием других полупроводниковых материалов, в том числе на основе гетерокомпозиций, получение которых эпитаксиальными методами сталкивается с принципиальными затруднениями. Работы в этом направлении пока не получили широкого развития. Тем не менее, имеются сообщения об успешном использовании метода прямого соединения для получения гетероструктур GaAs/Si и InP/Si с низкой плотностью дислокаций в тонком слое полупроводникового соединения. Такие структуры были затем использованы в качестве подложек для создания более сложных гетерокомпозиций на основе соединений Другим примером удач-  [c.83]

С каждым годом процессы эпитаксиального наращивания в сочетании с ионной имплантацией и импулы ным радиационным воздействием на материал играют все большую роль в формировании активных элементов сложнейших приборных структур. Особенно рельефно эго проявляется в технологии широкой номенклатуры приборов, создаваемых на основе полупроводниковых соединений А В" и др. В применении к полупроводниковым соединениям именно эпитаксиальные процессы позволяют наиболее полно реализовать преимущества этих материалов, обеспечивая получение монокристаллических слоев со свойствами, которые, как правило, недостижимы при выращивании монокристаллов из расплава. Кроме того, в процессах эпитаксиального наращивания сравнительно просто решаются проблемы создания высококачественных многослойных гомо- и гетероэпитаксиальных структур разнообразной геометрии и состава.  [c.84]

Полупроводниковые соединения типа AVHBIV. Известны полупроводники этого класса ReSia с шириной запрещенной зоны Eg = 0,13 se [16] и MnSi с кубической кристаллической структурой а — 4,557 А, группа Г, Eg = 0,5 — 0,6se,fA = 10 -г- 40 сж /(б-сек), X. = = 10" вт см-град) [242].  [c.414]

По данным прецизионного определения размеров кубической элементарной ячейки, ее период равен 6,1355 0,0001 А (решетка однотипна с решеткой ZnS). В работе [3] структуру AlSb ошибочно идентифицировали как кубическую типа алмаза, а = 6,1361 А. В работе [4] предполагается существование полупроводникового соединения AljSb, которое неустойчиво ниже 230° С. О незначительной растворимости Sb в А1 в твердом состоянии свидетельствует небольшое (на  [c.78]


Эпитаксия возможна из любой фазы газовой, Лидкой или твердой, но преимущественно используются методы газо- и жидкофазной эпитаксии. Они применяются в технологии производства микроэлектронных полупроводниковых и оптоэлектронных приборов для получения пленок и многослойных структур. В настоящее время методами эпитаксии получают слои элементарных полупроводников и полупроводниковых соединений, гранатов, ортоферритов и других материалов.  [c.327]

Спин-орбитальное расщепление валентной зоны. Перейдем теперь непосредственно к полупроводникам с решеткой цинковой обманки и рассмотрим дисперсию носителей тока в валентной зоне в окрестности точки экстремума ко =0. Полученные результаты применимы (с некоторыми оговорками и дополнениями) и для элементарных полупроводников со структурой алмаза, а также для полупроводниковых соединений со структурой вюрцита. В пренебрежении спином и спин-орбитальным взаимодействием (нерелятивистское приближение) Г-состояния на дне зоны проводимости и в потолке валентной зоны в полупроводнике типа GaAs характеризуются s- и /7-симметрией. Соответствующие (орбитальные, или координатные) функции записываются в виде S r) = S (представление Г) точечной группы Td) и X, Y, Z (представление Г15). Они периодичны с периодом решетки цинковой обманки, напримерХ(г + а,) = = А (г), где а, (г = 1, 2, 3) — базисные векторы решетки Браве. Учет спина удваивает число состояний t5 и — в зоне проводимости, X, tY, [Z,iX,iY, iZ— в валентной зоне.  [c.20]

При создании излучательных гетероструктур используется принцип изопе-риодического замещения в многокомпонентных твердых растворах полупроводниковых соединений. С ним связано широкое применение сложных по составу тройных и четверных систем, перекрывающих практически важный спектральный диапазон от 0,8 до 1,7 мкм. Широкий спектр задач, решаемых ВОЛС, и постоянное совершенствование источников излучения привели к созданию большого числа разновидностей этих источников, различающихся конкретной структурой и используемыми материалами.  [c.107]

Полупроводниковые соединения типа А В и их твердые растворы являются наиболее перспективными материалами для создания монолитных ИОС [2, 4]. Волноводные структуры на основе этих материалов получают методами диффузии, эпитаксиального наращивания, ионной имплантации. Формируют оптические волноводы на основе соединений Л "В как изменением их электрических свойств, так и за счет применения материалов различного состава [10]. ПП соединений типа GaAs зависит от концентрации свободных носителей заряда, главным образом вследствие влияния их на частоту плазменного резонанса и на положение края собственного поглощения. Слой с меньшей концентрацией свободных носителей заряда имеет более высокий ПП, чем подложка с высокой концентрацией носителей. В полупроводниковом материале с концентрацией свободных носителей N в единице  [c.168]

Кроме полупроводниковых элементов существует много полупроводниковых соединений. Один широкий класс, полупроводники типа АщВу, включает в себя кристаллы со структурой цинковой обманки (см. т. 1, стр. 93), состоящие из элементов III и V групп периодической системы. Связь в таких соединениях, как указывалось в гл. 19, также преимущественно ковалентная. В полупроводниковых кристаллах, построенных из элементов II и VI групп, она может  [c.188]

Если атомы компонентов соединения идентичны (элементарные вещества), то С2 = О и связь — чистая ковалентная . В этом случае обменное электронное облако полностью симметрично относительно центра между атомами, а взаимодействующие атомы нейтральны. Если атомы компонентов соединения различны, но С2 < . С , то связь будет преимущественно ковалентной, а атомы компонентов соединения заряжены антиионно и электронная плотность смещена в сторону компонента А. С ростом ионной составляющей связи С2 антиионный заряд будет уменьшаться благодаря смещению электронного облака в сторону более электроотрицательного атома компонента В. Таким образом, при смешанной кова-лентно-ионной связи электронное облако является подвижным и асимметричным. Это свойство полупроводниковых соединений составляет их важнейшую особенность. При сохранении кристаллической структуры с Zk = 4 подвижное электронное облако с увеличением разности электроотрицательностей компонентов соединения может смещаться к более электроотрицательному элементу, в результате чего могут не только полностью исчезать антиионные заряды, но и создаваться эффективные заряды, соответствующие ионным, и тем не менее соединение будет оставаться полупроводником.  [c.63]

Далее следует обратить внимание на то, что в правиле Музера-Пир-сона оговаривается только число В атомов элемента, входящего в состав полупроводника, а роль А атомов сводится к добавлению электронов в суммарное число валентных электронов Пд. Это позволяет предполагать, что можно посредством замены компонента А в исходном соединении получать не только полупроводниковые твердые растворы, производные от соединений А В - , но и другие бинарные, тройные и более сложные полупроводниковые соединения, но уже, возможно, со структурой, производной от алмазоподобной. В этом случае замещающие элементы выбираются из групп периодической таблицы, отличных от той, в которой расположен замещаемый атом А, однако при этом должны удовлетворяться общие закономерности образования полупроводников (см. выше).  [c.77]

К этой группе полупроводниковых соединений относятся халькогениды мыщьяка, сурьмы и висмута, кристаллизующиеся в структуры с моноклинной, ромбической и ромбоэдрической рещеткой (типа тетрадимита В Тез), соответственно.  [c.82]

Разработка и оформление чертежей на полупроводниковую микросхему тесно связаны с технологией ее изготовления, которая заключается в создании элементов микросхемы и их соединений в объеме и на поверхности полупроводниковой пластины (подложки). Технология изготовления ПИМС строится на сочетании двух основных методов диффузии и фотолитографии. С помощью диффузии (введение примесей) создаются объемные структуры элементов ПИМС, фотолитография позволяет получать необходимые конфигурацию и размеры этих структур  [c.538]

Всем видам искусственного и природного графита свойственны различные устойчивые дефекты структуры. В зависимости от степени регулярности и характера дефектов в весьма широком диапазоне изменяются механические, теплофизические, полупроводниковые и другие практически важные свойства графитовых материалов. Дополнительное разнообразие вносят гетероатомы, входящие в углеродные материалы либо в составе функциональных группировок на призматических гранях кристаллов графита, либо в форме соединений, внедренных в межплоскостное пространство, либо в виде механических примесей.  [c.10]


Смотреть страницы где упоминается термин Полупроводниковые соединения структурой : [c.110]    [c.93]    [c.93]    [c.95]    [c.98]    [c.100]    [c.431]    [c.381]    [c.220]    [c.112]    [c.170]    [c.189]    [c.75]    [c.76]    [c.231]    [c.892]    [c.224]   
Основы материаловедения и технологии полупроводников (2002) -- [ c.80 ]



ПОИСК



Л полупроводниковый

Полупроводниковые соединения

Тройные полупроводниковые соединения соединений с алмазоподобной структурой



© 2025 Mash-xxl.info Реклама на сайте