Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свет возбуждающий

Для атомов, обладающих как электронным, так и ядерным угл. моментом, возможен особый вид О. о., при к-рой достигается взаимная ориентация ядерно го и электронного угл. моментов с сохранением изотропности распределения суммарного угл. момента. Этот тип О. о. наз. сверхтонкой оптической накачкой и осуществляется неполяризованным и строго монохрома-тич. светом, возбуждающим атомы с одного из подуровней сверхтонкой структуры осн. состояния. Сверхтонкая накачка применяется в оптических стандартах частоты. Напр., в рубидиевых стандартах частоты в качестве эталонного используют переход 6834 МГц атомов НЬ. Такие стандарты обеспечивают постоянство частоты в пределах до 10 от номинального значения, отличаясь простотой конструкции, малой ценой и габаритами.  [c.441]


С увеличением экспозиции поле решетки увеличивается, и оно начинает препятствовать диффузионному движению электронов. Наконец, наступает такой момент, когда дальнейший рост амплитуды решетки заряда и поля прекращается. Наступает стационарный режим — состояние, при котором несмотря на наличие света, возбуждающего электроны, дальнейшего роста амплитуды поля решетки не происходит. Это возникает тогда, когда поле решетки полностью компенсирует так называемое эффективное диффузионное поле Дело в том, что диффузионное движение электронов из областей с большей концентрацией в области с меньшей концентрацией, которое происходит исключительно за счет тепловой энергии  [c.10]

Часть этих молекул передает избыток своей энергии квантам света возбуждающего пучка  [c.753]

Микроскопы агрегатные ЛЮМАМ-Р. На рис. IX. 3 приведена принципиальная оптическая схема микроскопов ЛЮМАМ 72-РЗ с компоновкой оптических узлов, расположением опорных плоскостей и основными конструктивными размерами осветительных устройств и насадок. При освещении сверху коллектор 2 и линза 5 изображают источник света 1 в апертурную диафрагму. Последняя вместе с изображением источника света проектируется с помощью линз 7 и светоделительной пластинки 8 в выходной зрачок объектива 9. Полевая диафрагма осветительного устройства изображается объективом 9 в плоскость объекта. Из общего излучения источника свет, возбуждающий люминесценцию, выделяется с помощью светофильтров 6. Для предохранения последних от  [c.373]

Микроскопы агрегатные ЛЮМАМ-И. На рис. IX. 4 приведена оптическая схема микроскопов типа ЛЮМАМ-И. При освещении снизу через конденсор источник света 1 (лампа ДРШ-250) коллектором 2 и системой зеркал 4—6 изображается в апертурную -диафрагму конденсоров 8 (КФ-4) или 9 (КУФ-3), а полевая диафрагма, расположенная вблизи кюветы 3, с помощью конденсоров — в плоскость предмета. Источник излучения света, возбуждающий люминесценцию, выделяется посредством сменного све-  [c.375]

Поскольку весь рассеивающий объем V состоит из большого числа микроскопических объемов и, то суммарное поле рассеяния складывается из полей, создаваемых этими объемами. Рассеяние отдельными малыми объемами v можно считать независимым для газа, если линейные размеры этих объемов велики по сравнению с радиусом межмолекулярного взаимодействия ( 10 см) и малы по сравнению с длиной волны возбуждающего света ( 10 см). В этом случае вычисление рассеяния во всем объеме V сводится к сложению интенсивностей рассеяния от объемов v. Исходя из выражения (13.5), имеем  [c.312]


Дальнейшие исследования в области люминесценции привели к установлению другого, отличного от правила Стокса закона. Согласно этому закону, при фотолюминесценции наблюдается также излучение с длиной волны, меньшей длины волны возбуждающего света. Такое излучение обычно называют антистоксовым.  [c.363]

Мы рассматривали поглощение светового кванта атомами, находящимися в основном состоянии El- Возможно также поглощение света атомами, находящимися в возбужденных состояниях, например в В результате такого поглощения атом перейдет на более высокий энергетический уровень 3. Для этого энергия возбуждающего светового кванта должна удовлетворять условию  [c.364]

Соотношение (16.7) справедливо для всех систем, для которых распределение по подуровням возбужденного состояния не зависит от частоты возбуждающего света и вообще от способа возбуждения. Кроме того, для выполнения соотношения (16.7) необходимо выполнение ряда дополнительных условий — отсутствие в системе поглощающих, но не люминесцирующих примесей, отсутствие невозбуждающего поглощения и т. д. Следует отметить, что соотношение (16.7) применимо не только для электронно-колебательных спектров сложных молекул, но и для любых других систем, состоящих из двух подсистем быстрой и медленной. Необходимо только, чтобы время перераспределения энергии внутри медленной подсистемы значительно превосходило длительность возбужденного состояния быстрой подсистемы, как это имеет место у сложных молекул, где рассматриваются переходы между колебательными подуровнями нижнего и первого возбужденного электронных состояний. В сложных молекулах между актами поглощения и испускания света происходит довольно быстрое перераспределение энергии по колебательным степеням свободы, в результате чего перед актом испускания устанавливается равновесное (температурное) распределение по колебательным уровням возбужденной молекулы. В то же время подобное равновесие электронных состояний не имеет места — в возбужденном электронном состоянии имеется значительный избыток молекул.  [c.368]

Квантовый выход в зависимости от частоты возбуждающего люминесценции света и структуры люминесцирующей молекулы может быть меньше, равен или больше единицы. В первом случае не каждый поглощенный квант вызывает излучение. Равенство единице квантового выхода означает, что каждому поглощенному кванту соответствует точно один квант люминесценции. Даже  [c.368]

Физическая причина вынужденного рассеяния Мандельштама — Бриллюэна состоит в том, что интенсивная световая волна возбуждающего света, первоначально слабая волна рассеянного света и тепловая упругая волна, которая, как указано выше, обусловливает дискретные компоненты Мандельштама — Бриллюэна, нелинейно взаимодействуют друг с другом. Такое нелинейное  [c.598]

Здесь правая часть совпадает с выражением для звуковой волны, ответственной за образование стоксовой компоненты Мандельштама — Бриллюэна. Амплитуда первоначально слабой волны, будучи умножена на Е , приведет к росту электрического поля световой волны стоксовой компоненты, что в свою очередь приведет к росту давления и т. д. Такой процесс параметрического усиления будет происходить до тех пор, пока интенсивность рассеянной световой волны не окажется сравнимой с интенсивностью возбуждающего света.  [c.599]

L — линия возбуждающего света рубинового лазера и 5 — первая и вторая стоксовы  [c.600]

Опыт показал, однако, что ход зависимости, изображенный на рис. 32.7, не всегда имеет место. У ряда металлов, особенно щелочных, для которых красная граница лежит далеко в видимой и даже в инфракрасной области спектра и которые, следовательно, чувствительны к широкому интервалу длин волн, наблюдается следующая особенность сила тока имеет резко выраженный максимум для определенного спектрального участка, быстро спадая по обе его стороны селективный, или избирательный, фотоэффект, рис. 32.8). Селективность фотоэлектрических явлений очень напоминает резонансные эффекты. Дело происходит так, как будто электроны в металле обладают собственным периодом колебаний, и по мере приближения частоты возбуждающего света к собственной частоте электронов амплитуда колебаний их возрастает и они преодолевают работу выхода.  [c.644]


Аналогичное явление Вуд наблюдал и в парах ртути, причем в данном случае возбуждающий свет представлял собой излучение ртути с Я = 253,7 нм. Конечно, сосуд с парами должен быть сделан из кварца и источником возбуждения должна служить ртутная линия, испускаемая, например, ртутной кварцевой лампой, горящей в таких условиях, при которых возбуждающая линия Я = = 253,7 нм достаточно резка и интенсивна (исключено поглощение возбуждающей линии более холодными слоями паров ртути, могущими скопляться в периферической части разряда). Удается наблюдать испускание и второй линии ртути Я = 185,0 нм, которая гораздо сильнее поглощается и наблюдение которой поэтому значительно труднее.  [c.727]

Истолкование опыта, приведшее к тому, что явление было названо резонансным излучением, покоилось на классических представлениях о резонансе (совпадение периодов) возбуждающего света и возбуждаемого атома, в результате которого последний приходит в сильное колебание и становится самостоятельным источником соответствующего излучения. Возможны, конечно, случаи, когда поглощающий атом передаст свою энергию окружающим атомам ранее, чем амплитуда его колебания приобретет заметное значение, т. е. ранее, чем резонансное излучение его достигнет наблюдаемой величины. В таком случае оно ускользнет от наблюдения, и эффект поглощения света сведется к нагреванию всего газа. Очевидно, что такие явления будут происходить при наличии сильного взаимодействия между окружающими атомами, например, при большой плотности пара или при добавлении к нему постороннего газа достаточной плотности. Действительно, при этих условиях свечение значительно слабеет или даже совсем пропадает (тушение свечения). Так, если к парам ртути с давлением около 0,001 мм рт. ст., обнаруживающим хорошо выраженное резонансное свечение, добавить водород под давлением 0,2 мм рт. ст., то интенсивность свечения упадет вдвое при большем давлении водорода свечение ослабевает соответственно сильнее. Аналогично действуют и добавки других газов, хотя количество, необходимое для ослабления свечения вдвое, зависит от природы добавляемого газа, что показывают приводимые ниже данные.  [c.727]

Цвет возникающего свечения является характерным признаком люминесценции он отличен от цвета возбуждающего света, благодаря чему облегчается наблюдение люминесценции. При этом обычно соблюдается правило, установленное Стоксом (1852 г.), согласно которому свет люминесценции характеризуется большей длиной волны, чем поглощенный телом свет, вызывающий люминесценцию. Обычно расположение спектральных полос люминесценции и абсорбции соответствует изображенному на рис. 39.3, где видно, что полосы эти частично перекрываются. Таким образом, правило Стокса означает, что максимум полосы поглощения смещен в сторону коротких волн относительно максимума полосы люминесценции.  [c.752]

Из общих соображений ясно, что свет, способный вызвать люминесценцию некоторого вещества, должен поглощаться этим веществом, т. е. длина волны возбуждающего света должна лежать внутри полосы абсорбций. Так как последняя довольно широка, что почти всегда наблюдается для жидкостей и твердых тел, то в пределах полосы абсорбции можно довольно значительно варьировать длину волны возбуждающего света. Исследования такого рода показали, что спектр люминесценции не меняется при изменении длины волны возбуждающего света, пока эта последняя лежит в пределах данной полосы поглощения (рис. 39.4).  [c.753]

Основной опытный факт — увеличение доли рассеянного света на несколько порядков величины — получает объяснение, если принять во внимание общее положение квантовой теории излучения о существовании стимулированного аналога у любого радиационного процесса ). Комбинационное рассеяние, наблюдаемое при малых интенсивностях возбуждения, представляет собой спонтанное испускание фотона ( = — ) при исчезновении фотона Й возбуждающего света. Поток спонтанного комбинационного рассеяния, отнесенный к единице объема и суммированный по всем направлениям, пропорционален освещенности / вещества.  [c.854]

Благодаря дисперсии показателя преломления угол О не равен нулю, и антистоксовы компоненты рассеяния имеют максимальную интенсивность вдоль образующих конуса с углом при вершине О. В конденсированных средах угол б равен нескольким градусам (для бензола О = 2,0°, для нитробензола б = 3,0° при использовании рубинового лазера). В газовых средах показатель преломления мало отличается от единицы, дисперсия ничтожна, и направление синфазности для антистоксова рассеяния в соответствии с опытом практически совпадает с направлением распространения возбуждающего света.  [c.859]

Деполяризация рассеянного света. Иной результат получается в том случае, когда молекула рассеивающей среды анизотропная. Если в первом случае было безразлично, как орнеитирована молекула по отношению к направлению электрического вектора падающего света, то во втором случае оно имеет существенное значение. В зависимости от ориентации молекулы по отношению к возбуждающему полю направление индуцированного колеблющегося диполя может совпадать с направлением электрического поля света (возбуждающего поля). В качестве примера рассмотрим предельный случай — полную анизотропию, т. е. модели так называемой жесткой налочки где поляризуемость во всех направлениях, кроме одного, совпадающего с осью палочки , равна нулю (а = а,  [c.316]

Динамические спектральные провалы. Связь с полным двухфотонным коррелятором. Рассмотрим ансамбль примесньк молекул в аморфной среде. Частоты wo БФЛ этих молекул, отвечающие первому синглетному переходу, имеют разброс, определяемый функцией распределения n(wo). Все эти молекулы могут поглощать свет возбуждающего лазера, причем форма полосы поглощения примесной молекулы описывается функцией J u>p - Wo), где Шр — частота лазерного фотона. Если свет лазерного источника ослаблен до такой степени, что мы можем пренебречь небольшим числом возбужденных им молекул, то форма полосы поглощения образца описывается функцией  [c.171]


К двухквантовой спектроскопии относится, например, обычная спонтанная флуоресценция, поскольку перед тем как молекула спонтанно испустит квант света, она поглощает квант света возбуждающего лазера. В силу  [c.187]

Свет возбуждающий 18, 66, 172, 232 — люминесценции 18, 66, 172, 232 Светофильтры запирающие 173, 229 Система иммерсионная 9 —микроскопа осветительная 10 Спектр диффракционный 8, 17 Стереофотографиро вание 119 Стереоэффект 173  [c.247]

Вынужденное рассеяние Мандельштама — Бриллюэна в сероуглероде Такума и Дженигс [610] возбудили во внеосевом резонаторе. Угол оси резонатора с направлением возбуждающего света (угол рассеяния) составлял / 2,5°. Эти же авторы [611] методом гетеродинирования света, рассеянного в сероуглероде под углом 2,5°, со светом, возбуждающим рассеяние, определили скорость  [c.415]

Такие модельные представления подтверждаются огромным экспериментальным материалом. Так, например, при исследовании кристаллов, обладающих высокосимметричной кубической решеткой, отсутствуют оптические эффекты, связанные с различной ориентацией кристалла относительно возбуждающего пучка света. Однако при внедрении в решетку кубического кристалла ионов какого-либо элемента могут образоваться локальные анизотропные центры. При этом кристалл остается макроскопически изотропным, но такая "скрытая анизотропия" может быть обнаружена при том или ином анизотропном воздействии. Даже полностью изотропное вещество может стать анизотропным под воздействием внешних механических или электрических воздействий.  [c.113]

Соотношение (8.53) позволяет определить постоянную Планка из измерения наклона прямых, выражающих зависимость потенциала задержки от час готы падающего на фотокатод излучения. Весьма точное определение h таким методом было выполнено П. И. Лукирским и С. С. Прилежаевым в 1930 г. Для измерений использовали сферический конденсатор, внутренний шарик которого был изготовлен из никеля и освещгится светом ртутной лампы. Спектральные линии ртути, возбуждавшие фотоэффект, выделялись монохроматором с кварцевой призмой. В этих опытах наблюдался относительно крутой спад кривых, характеризующих зависимость силы фототока от приложенного  [c.434]

Для грубого качественного пояснения природы ВРМБ будем считать, что в среде существуют поле возбуждающей световой волны о os (Ы—kr) (гигантский импульс лазера) и — в результате рассеяния света — поле одного лишь стоксового сателлита El os [((О—Q)/ — i ]. Поле этого сателлита, как показано выше, возникает в результате рассеяния света под углом Брэгга и модуляции рассеянного света тепловой волной с частотой Й.  [c.599]

Отражение света, происходящее из-за нелинейности среды и пространственного периодического изменения амплитуды поля, позволяет расширить наши представления о воз1 южных способах реализации положительной обратной связи в квантовых генераторах. До сих пор мы полагали, что положительная обратная связь между полем излучения и активной средой, необходимая для превращения усиливающей системы в автоколебательную (см. 225), осуществляется с помощью зеркал, отражающих волны обратно в резонатор. Рассмотренное выше нелинейное отражение света служит физической основой для иного способа реализации положительной обратной связи, применяющегося в некоторых лазерах. Пусть кювета К представляет собой активную среду (см. рис. 41.3). В направлении оси л имеет место периодическая неоднородность среды за счет нелинейных эффектов. Интерферирующими пучками / и //, создающими оптическуро неоднородность, могут быть пучки возбуждающего излучения. Следовательно, в данном случае отражение будет происходить в результате модуляции коэффициента усиления активной среды. Спонтанное излучение среды, испущенное в направлении оси х, будет отражаться от неоднородности и возвращаться в активную среду, что и соответствует обратной связи. Для некоторых частот обратная связь будет положительной, и при выполнении пороговых условий возбудится генерация излучения в направлении оси х.  [c.828]

В 162 было выяснено, что в спектре рассеянного света существуют линии, отличающиеся по частоте от падающего излучения на величины, равные частотам со внутримолекулярных колебаний. В случае сравнительно небольших освещенностей, характерных для источников некогерентного излучения, интенсивность комбинационного рассеяния чрезвычайно мала поток света, рассеянного в 1 см , составляет —10" часть возбуждающего потока даже для самых сильных линий (Ат = ыф2яс = 992 см для бензола и 1345 см для нитробензола). Если же возбуждение осуществляется при освещенностях порядка 10 —10 Вт/см , что вполне достижимо с помощью мощных импульсных лазёров, доля рассеянного потока сильно увеличивается и достигает десятков процентов. Такое увеличение интенсивности касается не всех, но только наиболее интенсивных линий комбинационного рассеяния. Помимо линий первого порядка с частотами ю со,-, появляются и линии более высоких порядков (частоты со 2со,-, со dz Зсо,-). Наконец, рассеяние приобретает отчетливо выраженный направленный характер.  [c.853]

Стимулированный аналог спонтанного комбинационного рассеяния, называемый вынужденным комбинационным рассеянием (или, сокращенно, ВКР), также заключается в исчезновении фотона Лео и испускании фотона ЙЫ5, но вероятность этого процесса пропорциональна плотности потока и возбуждающего (/) и рассеянного излучения. Благодаря этому процессу, рассеянное излучение с частотой 0)5 усиливается в рассеивающей среде по экспоненциальному закону, подобно усилению света в среде с инверсной заселенностью уровней в результате эйнщтейновского вынужденного испускания (см. 223).  [c.855]


Смотреть страницы где упоминается термин Свет возбуждающий : [c.191]    [c.229]    [c.147]    [c.405]    [c.360]    [c.431]    [c.436]    [c.597]    [c.598]    [c.598]    [c.603]    [c.727]    [c.754]    [c.788]    [c.817]    [c.818]    [c.858]    [c.913]    [c.127]    [c.127]   
Микроскопы, принадлежности к ним и лупы (1961) -- [ c.18 , c.66 , c.172 , c.232 ]



ПОИСК



Вынужденное рассеяние Мандельштама—Бриллюэна вблизи порогового значения интенсивности возбуждающего света

Естественный возбуждающий свет в релеевском и комбинационном рассеяни

Зависимость двухфотонных корреляторов от времени и частоты возбуждающего света

Зависимость интенсивности света, рассеянного поверхностью раздела двух жидкостей, от длины волны возбуждающего света

Зависимость поляризации люминесценции от длины волны возбуждающего света и концентрации

Зависимость поляризации люминесценции от длины волны возбуждающего света и концентрации волны поляризованного света

Зависимость поляризации люминесценции от длины волны возбуждающего света и концентрации волны света

Зависимость поляризации люминесценции от длины волны возбуждающего света и концентрации раствора

Зависимость поляризации люминесценции от длины волны возбуждающего света и концентрации частоты для призм

Зависимость поляризации люминесценции от длины волны возбуждающего света и концентрации яркости поля

Линейно-поляризованный возбуждающий свет в релеевском и комбинационном рассеянии

Люминофоры возбуждаемые светом (фотолюминофоры

Некоторые возможные погрешности при измерении коэффициента деполяризации рассеянного света 1. Погрешность, вызванная конечной апертурой пучков возбуждающего и рассеянного света

Неполяризованный возбуждающий свет

Неполяризованный возбуждающий свет в релеевском и комбинационном рассеянии

Погрешности вследствие неточного знания состояния поляризации возбуждающего света . 5. Погрешность, вызванная комбинационным рассеянием света



© 2025 Mash-xxl.info Реклама на сайте