Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усилитель линейный

Другими достаточно простыми примерами стохастических автоколебательных систем являются различные типы генераторов с туннельными диодами [190, 314, 607, 682]. Рассмотрим сначала один из них, схема которого представлена на рис. 9.2, [190, 314, 607]. Уравнения такого генератора в предположении, что характеристика усилителя линейна, имеют вид  [c.264]

Для придания характеристике управления магнит иого усилителя линейного характера служит обмотка что обеспечивает работу магнитного усилителя в режиме со свободными четными гармониками.  [c.163]


Наиболее естественным образом можно зарегистрировать процесс деления, наблюдая большую кинетическую энергию осколков деления. Для этого была изготовлена ионизационная камера деления ИКД, отличающаяся от обычной ионизационной камеры тем, что на ее электрод нанесен тонкий слой соли урана U (рис. 142, а). Камера была соединена с линейным усилителем ЛУ и осциллографом О.  [c.360]

Электроизмерительный преобразователь с магнитной компенсацией, структурная схема которого показана на рис. 8.6, включает чувствительный элемент 1, жестко связанный с магнитным плунжером (постоянным магнитом) 2, магнитный преобразователь 3, полупроводниковый усилитель 4 и устройство обратной связи 5. С помощью магнитного плунжера линейное перемещение х, обусловленное воздействием давления на элемент 1, преобразуется в управляющий магнитный поток Ф,J. В магнитном преобразователе 3 разность магнитных ПОТОКОВ ДФ=Ф, —Фо.с, образованных действием магнитного плунжера (Фи) и устройства обратной связи (Фо.с), преобразуется в электрический сигнал и, который затем преобразуется в усилителе 4 в унифицированный выходной сигнал постоянного тока О—5 мА. Выходной сигнал поступает в линию дистанционной передачи и одновременно в устройство обратной связи, предназначенное для получения магнитного потока для компенсации воздействия управляющего магнитного потока.  [c.159]

Теперь рассмотрим, как будет развиваться процесс автоколебаний в своей начальной фазе для произвольной т-й компоненты в предположении о линейности усилителя ( 2 = — <1) и с учетом различного дифференциального времени задержки Д для разных частотных компонент.  [c.235]

В этом случае мы искусственно создаем большие начальные значения тц и Ь, д высокочастотной компоненты (5.7.24), и, хотя скорость ее роста меньше, чем у низкочастотной, она первой выйдет за пределы линейного участка характеристики и может снизить действующую крутизну усилителя до значения, не обеспечивающего необходимой степени регенерации других (в том числе и низкочастотных) компонент. Опыт показал, что таким путем можно заставить широкополосную автоколебательную систему с задержкой генерировать (запоминать) колебания до, примерно, пятнадцатой частотной компоненты.  [c.237]

Важной характеристикой усилителя являются пределы линейности его усиления, т. е. пределы изменения I, внутри которых выходной сигнал пропорционален входному. В проведенном нами рассмотрении выходной сигнал всегда был пропорционален входному (см. (7.1.12), (7.1.15), (7.1.17)). Это связано с видом характеристики нелинейного элемента (7.1.2). При больших амплитудах входного сигнала необходимо учитывать следующие члены разложения дс по ис, что и приводит к нелинейной зависимости выходного сигнала от входного. Кроме того, мы считали, что генератор накачки представляет собой источник с нулевым внутренним сопротивлением, т. е. генератор неограниченной мощности. Это позволяло перекачивать любую энергию в контуры с частотами 015 и ю . При использовании реального генератора накачки линейность усиления нарушается, когда мощности колебаний на частотах и со становятся сравнимыми с мощностью генератора накачки.  [c.260]


Приведенная движущая сила Уд зависит от напряжения 11—(7н, поступающего на клеммы усилителя 2. Это напряжение, в свою очередь, зависит от разности ы—Ыд. В первом приближении указанные зависимости можно считать линейными и тогда приведенная движущая сила найдется из соотношения  [c.99]

Стандартный преобразователь ПТ-ТП-68, предназначенный для линейного преобразования ЭДС в унифицированный токовый сигнал 0-5 мА, содержит измерительный мост и усилитель постоянного тока. Входная и выходная цепи гальванически разделены, это достигается применением магнитных усилителей в прямом тракте и в цепи обратной связи.  [c.26]

Вольтметры с усилителями часто имеют выход для подключения самопишущих измерительных приборов. Благодаря этому могут быть использованы также и самопишущие приборы с низким входным сопротивлением для регистрации результатов измерения с высоким сопротивлением источника. Высокоомные универсальные приборы, применяемые в электротехнике для измерения напряжений, токов и сопротивлений, тоже могут применяться для измерения потенциала. Универсальные приборы обычно имеют измерительный механизм магнитоэлектрической системы с вращающейся рамкой, подвешенной на ленточных растяжках. Они прочны, нечувствительны к действию повышенной температуры и имеют линейную шкалу. При времени успокоения стрелки не более 1 с, как требуется для измерения потенциалов, максимальное внутреннее сопротивление таких приборов составляет 100 кОм на 1 В. Поскольку сопротивление электродов сравнения большой площади обычно не превышает 1 кОм, с применением таких приборов возможны достаточно точные измерения потенциалов. Однако при измерениях потенциала в высокоомных песчаных грунтах или на мощеных мостовых (малая диафрагма) сопротивление электрода сравнения может значительно превышать 1 кОм. Погрешности измерения, получаемые в таких случаях при применении универсальных приборов, могут быть устранены с применением схемы, принцип которой показан на рис. 3.6 [9]. Параллельно измерительному прибору при помощи кнопочного выключателя S подключается сопротивление Ri, одно и то же для соответствующего диапазона измерений. При допущении, что внешнее сопротивление меньше внутреннего Ra[c.92]

Идеальным прибором для ЭМА возбуждения и приема ультразвука должно быть устройство, воздействующее на высокочастотную катушку сильным и очень коротким высокочастотным импульсом. После окончания мощного импульса усилитель должен быть готов к приему эхо-сигнала без добавления к нему какого-либо шума или искажений. Практически приблизиться к этому можно, создавая более мощные импульсы высокочастотного поля, включая и выключая их с максимально доступной быстротой и используя малошумящий линейный приемник, который восстанавливает чувствительность после перегрузки мощным импульсом. Эти соображения и положены в основу устройства, описанного ниже.  [c.124]

Как видно из формулы (5), сигнал на выходе измерителя отношений не зависит от частоты и амплитуды угловых колебаний, коэффициентов усиления усилителей. При такой схеме обработки измерительного сигнала необходимым условием является лишь линейность амплитудной характеристики усилителей 8, 13.  [c.153]

Основными решающими элементами АВМ являются усилители постоянного тока с большим коэффициентом усиления и глубокой отрицательной обратной связью, предназначенные для выполнения различных математических линейных операций (суммирование, изменение масштаба и знака, дифференцирование и интегрирование) множительные блоки, выполняющие операции умножения функциональные преобразователи, осуществляющие сложные нелинейные операции.  [c.326]

Частотные ограничения обычно определяются пределами линейности частотной характеристики операционных усилителей. Для большинства АВМ собственные частоты колебаний не должны превышать 5—8 гц.  [c.332]


Для операционных усилителей современных АВМ всегда можно указать динамический диапазон, в пределах которого выходное напряжение пропорционально входному. Во избежание ошибок, связанных с насыщением усилителя, работа вне пределов линейного диапазона должна быть исключена. Вместе с тем, во избежание ощутимого влияния напряжений помех и случайных шумовых напряжений, уровень полезного сигнала должен быть достаточно высок.  [c.332]

Существует несколько модификаций линейного шагового ЭГП. Движение от шагового электродвигателя может передаваться либо непосредственно на винт, либо на втулку. Недостатком пер вого варианта является то, что при больших ходах масса винта, длина которого равна величине хода, оказывается значительной, а это ухудшает динамические качества привода. Уменьшить массу винта за счет уменьшения его диаметра не всегда можно ввиду трудностей обработки. Таким образом, второй вариант с точки зрения получения лучших динамических свойств более предпочтителен, так как имеет значительно меньшую массу подвижных элементов первого каскада усилителя.  [c.162]

Для того чтобы определить, выполняется ли неравенство (2-177) в широком диапазоне частот изменения возмуш,аюш,его момента, т. е. оценить, не превыш>ает ли сигнал на входе усилителя линейной зоны его статической характеристики, необходимо построить ЛАЧХ  [c.148]

Качество усиления сигнала определяется его линейными и нелинейными искажениями, вносимыми усилителем. Линейные искажения обусловлены наличием реактивных элементов в усилителе и определяются амплитудной, амплитудно-частотной, фазочастотной и переходной характеристиками [7]. Нелинейные искажения сигнала возникают из-за нелинейности вольт-амперной характеристики (ВАХ) активных элементов и харак-териз5тотся коэффициентами гармоник.  [c.890]

Пределы погрешности аналогового компенсатора определяются в основном чувствительностью усилителя, линейностью и разрешающей способностью компенсирующего элемента. Чувствительность усилителя обьмно составляет менее 0,02 % от предела измерения (несколько микровольт). В качестве компенсирующего элемента применяют прецизионные проволочные реохорды малого сопротивления, выполненные в виде одного витка проволоки из специального сплава, имеющего нелинейность порядка 0,01—0,02 %, или многовитковые реохорды с нелинейностью < 0,1 %, а также тензорезисторные датчики изгиба класса 0,05. Таким образом, достижимая погрешность аналоговых компенсаторов составляет не более 0,1 % от верхнего предела измерения. Для весов коммерческой точности ( 0,1 %) выпускаются многодиапазонные компенсаторы, в которых измеряемое выходное напряжение датчиков делится на диапазоны так, чтобы величина одного диапазона соответствовала пределу измерения прибора. Введение нескольких диапазонов, аналогично накладным гирям, увеличивает общее число делений весов и, кроме того, эффективно уменьшает влияние нелинейности силоизмерительных датчиков за счет кусочно-линейной аппроксима-  [c.143]

Входной сигнал и (сигнал управления) поступает на сравнивающее устройство. Сигнал рассогласования усиливается по амплитуде (У—усилитель), преобразуется устройством преобразова-иия ПР и затем усиливается ио мощности усилителями первого, второго и третьего каскада УМг. .. УМз. Перемещение рабочего органа осуществляется от исполнительного двигателя ИД через безлюфтовый редуктор БР и шариковую винтовую пару ШВП. Измерение линейного перемещения рабочего органа у осуществляется датчиком обратной связи Д.  [c.33]

Таким образом, структура привода будет записываться в виде числа из нулей и единиц <Ко, К, Кг, Кз, Кз, Кз>- Например, если привод имеет описание структуры в виде <0, 0, 0, о, о, 0>, то это электрогидравлический линейный шаговый привод привод, описываемый структурой <1, 1, 1, 1, 1, 1>,— электрический с электромашинным усилителем мощности привод, заданный структурой -<0, 1, 1, 1, 0, 0>,— электрический с силовым шаговым двигателем привод, имеющий структуру -<1, О, 1, о, о, 1>,— электрогидравлический, роторный с электромагнитным преобразователем и реечной передачей и т. д. Например, структура -<0, о, о, 0, 0, 0> определяет привод, в котором отсутствует датчик обратной связи (/(о = 0) следовательно, преобразующее устройство привода должно быть построено  [c.33]

КОЙ температурой в цепь усилителя вводится точный аттенюатор. На рис. 3.15 приведена блок-схема, поясняющая принцип действия метода равных сопротивлений. Как всегда в таких случаях, предварительная ступень усилителя выполнена на полевых транзисторах. Метод равных сопротивлений требует определения собственного шума усилителя, поскольку он входит в измеряемые шумовые сигналы неодинаково. Кроме того, часть усилителя, находящаяся перед аттенюатором, должна обладать высокой линейностью. Параллельно аттенюатору включается схема компенсации, которая обеспечивает равенство полосы пропускания частот для двух сигналов. Переключатель, основанный на механическом принципе, работает на частоте 30 Гц и вносит незначительные помехи в цепь усилителя. Переключатели на входе и в цепи заряда запоминающих конденсаторов работают в противофазе, что позволяет подавить наводки, связанные с переключением. Кровини и Эктис [21] измерили отношение термодинамических температур с точностью в 2-10 (на уровне За), что составляет 0,25 К при 1000 К-  [c.117]

Для непосредственного измерения i можно ввести в день фотоэлемента какой-нибудь прибор, измеряюш,ий силу тока. Обычно в качестве такого прибора используют второй гальванометр. При удачной конструкции усилителя, обеспечении хороших контактов, сведении к минимуму вибраций и т. д. удается, используя два простых кембриджских гальванометра с внутренним сопротивлением 500 ом, работать с сопротивлением/ = 20 ом, а при благоприятных условиях с еще меньшим сопротивлением. При этом достигается увеличение чувствительности по напряжению примерно в 25 раз по сравнению с собственной чувствительностью гальванометра этого типа. Иными словами, если гальванометр без усилителя имеет чувствительность примерно 2 мм мкв при расстоянии от зеркала до шкалы 1 м, то при использовании описаиной схемы с двумя такими же гальванометрами чувствительность достигает 5 см1мкв. Действие сильной отрицательной обратной связи выражается в том, что свойства системы становятся почти не зависящими от параметров гальванометра и фотоэлементов. Это избавляет нас от необходимости заботиться о линейности первичного гальванометра и фототока [см. (10.1)].  [c.177]


В начальный период под влиянием различных флуктуацион-ных процессов возбуждаются все возможные частотные компоненты. Затем низкочастотные компоненты в силу ускоренного развития опережают по амплитуде высокочастотные компоненты. При дальнейшем росте амплитуд низкочастотных компонент они первыми выходят за пределы линейного участка характеристики, что вызывает уменьшение эффективной крутизны усилителя и, как следствие, ухудшение условий для нарастания амплитуд высокочастотных компонент. Это в конечном счете приводит к выживанию только одной или нескольких самых низкочастотных компонент.  [c.236]

Принцип действия. Измерительное устройство состоит из датчика / (рис. 4.102), преобразующего измеряемый параметр в линейное или угловое перемещение, преобразователя 2, приводящего поступательное перемещение датчика в перемещение, удобное для отсчета, усилителя 3, увеличивающего перемещения датчика, устройства 4, по которому ведется отсчет или регистрация, и момент-ной пружины 5, предназначенной для компенсации мертвого хода и возвращения подвижных частей измерительных устройств в исходное положение. Датчики и мо-ментные пружины представляют собой упругие элементы (см. гл.  [c.505]

Толщиномер содержит генератор СВЧ / проходную детекторную секцию 2 излучаюншй пирамидальный рупор металлолиэлеитрическую линзу 4 передающего рупора диэлектрические согласующие вставки 5 и б призматической формы металлодиэлектрическую линзу 7 приемного пирамидального рупора S оконечную детекторную секцию 9 мотор 10 перемещения приемного рупора каретку с винтом 11 преобразователь 12 оборотов винта в линейный электрический сигнал усилитель 13 низкой частоты индикатор 14 записи формы  [c.223]

Основной усилитель 4 должен обладать равномерной амплитудно-частотной характеристикой, охватываюш,ей весь. диапазон наблюдаемых частот, при коэффициенте усиления 40—80 дБ, Характеристика усиления — линейная либо (в случае широкого динамического диапазона) логарифмическая.  [c.317]

Предложен способ определения рассеяния энергии при колебаниях , способы и устройство для определения декремента затухания колебаний. Для записи петли гистерезиса во время деформирования образца сигнал от реохордного и проволочного датчиков подается на двухкоординатный самописец. Использование ЭВМ для записи затухающих колебаний при оценке циклической вязкости предусматривает использование специального электронного прибора, измеряющего величину логарифмического декремента колебаний с автоматической записью абсолютных значений амплитуд колебаний от Л] до Л с точностью до третьего знака при частоте колебаний от 10 до 10 Гц [176]. Для возбуждения колебаний применялся прибор, в котором деформация образца осуществлялась по схеме чистого изгиба (рис. 75). Особенностью подключения прибора к ЭВМ является наличие специального электронного согласующего устройства — аттенюатора входа и линейного усилителя, не входящих в комплект машины.  [c.145]

В отличие от напряжения постоянного тока напряжение переменного тока можно измерять при помощи электрода сравнения типа земляной пики (заостренного стального стержня, втыкаемого в грунт) переходное сопротивление у таких металлических стержней ниже, чем у электродов сравнения, перечисленных в табл. 3.1, но для измерений приборами электромагнитной системы или приборами электродинамической системы оно может все же оказаться слишкой высоким. Поэтому рекомендуется при измерениях напряжения переменного тока применять также вольтметры с усилителями или самопищущие приборы с усилителями, которые имеют высокие внутренние сопротивления, высокую точность измерений и линейную шкалу. В технике измерений переменного тока важно учитывать частоту и форму кривой тока. Обычно измерительные приборы тарируют на эффективные значения при частоте 50 Гц и синусоидальной форме кривой тока. Поэтому при иной частоте и иной форме кривой тока (при управлении с фазовой отсечкой) они могут давать искаженные показания. Погрешности измерения, обусловленные формой кривой тока, могут быть выявлены по получению различных показаний для одной и той же измеряемой величины в различных диапазонах измерения.  [c.100]

ВД — акселерометр (пьезоэлектрический датчик ускорений) САЧП — стандартная аналоговая часть прибора —входной (предварительный) усилитель V,. Vj — усилители БКФ — блок корректирующих фильтров QKSi — общей вибрации по оси Z QKSx.y — общей вибрации по осям X, У TKS — локальной вибрации QLR — линейный выпрямитель —логарифмический среднеквадратический детектор I — индикатор (обычно включает усилитель индикации и стрелочный прибор) SM — квадратор SFW — преобразователь напряжение частота DAT — счетчик (включает блок накопителя дозы, преобразователь кода, цифровой индикатор)  [c.26]

Работы по созданию нелинейных решаюш их элементов были сосредоточены на разработке электронно-лучевых и диодных функциональных преобразователей и множительно-делительных устройств. Наряду с этим, разработаны устройства для воспроизведения постоянного запаздывания на конденсаторах и с использованием магнитной записи. Были созданы преобразующие устройства для связи аналоговой вычислительной машины (АВМ) с реальной аппаратурой электропщравлические и с применением электродинамических муфт. Ряд конструктивных идей, воплощенных в серии аналоговых вычислительных машин типа ЭМУ, нашел применение в других АВМ, выпускаемых в стране. К этим идеям в первую очередь следует отнести структурный (а не матричный) принцип построения АВМ, сменные цепи обратных связей, позволяющие в зависимости от характера задач при фиксированном количестве усилителей в машине создавать различные соотношения между числом линейных и нелинейных решающих элементов.  [c.264]

Принципиальная схема следящей системы представлена на рис. 2, где приняты следующие обозначения ее основных элементов 1 — задающая ось 2 — отрабатывающая ось 3—электронный усилитель 4 — двухфазный асинхронный исполнительный двигатель 5 — зубчатый редуктор. Нелинейную характеристику типа люфта (рис. 1) сосредоточим в кинематической цепи привода между редуктором и щеткой отрабатывающего потен-щиометра и будем. считать, что в условиях относительно малых входных сигналов можно ограничиться рассмотрением линейной части характеристики усилителя.  [c.137]

Приведены нелинейные математические модели ряда пневматических измерительных систем управления, имеющих узел компенсации динамических погрешностей измерений. Узел компенсации построен на пятимембранном реле УСЭППА с усилителем сопло — заслонка или два сопла — заслонка . На основании результатов моделирования сделаны заключения об особенностях систем при линейном законе измеряемого размера.  [c.182]

Поисковый механизм сообщает оптической системе низкочастотные (0,005 гц) угловые колебания относительно опоры О (см. рис. 122) для осматривания по винтовой линии рабочей части образца 6. Механизм представляет собой реверсивный электродвигатель с фазосдвигаюш,ими обмотками, на валу которого имеется кривошип, соединенный шатуном с оптической системой так, что колебания ее происходят в вертикальной плоскости, проходящ.ей через ось образца. Управление мотором осуществляется блоком питания и,, усиления 2, электрическая блок-схема которого представлена на рис. 124. Блок состоит из двухкаскадного линейного усилителя (усилитель сигнала 1 и  [c.185]

Машины оснащаются несколькими интеграторами, число которых определяет наивысщий порядок системы дифференциальных уравнений, которую способна решить машина. Кроме того, в комплект моделирующей установки входят усилители-инвертеры, суммирующие подаваемые на их вход напряжения и изменяющие знак суммы на обратный множительные блоки, осуществляющие операцию умножения напряжений при решении нелинейных уравнений, а также специальные функциональные преобразователи, позволяющие получить кусочно-линейную аппроксимацию входящих в уравнения нелинейных функций.  [c.84]



Смотреть страницы где упоминается термин Усилитель линейный : [c.203]    [c.457]    [c.194]    [c.293]    [c.526]    [c.115]    [c.236]    [c.358]    [c.243]    [c.303]    [c.149]    [c.221]    [c.354]    [c.123]    [c.146]    [c.433]   
Волны (0) -- [ c.293 ]



ПОИСК



Оценка необходимой линейной зоны предварительного усилителя следящего привода

Схемы линейных звеньев систем автоматического управления с различными передаточными функциями F(p) на одном операционном усилителе



© 2025 Mash-xxl.info Реклама на сайте