Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон поляризации

Простейшие материальные соотношения (как и уравнения состояния МСС) выражаются в ДПС для начально изотропных также в отношении поляризации и намагничивания сред. Законы поляризации, намагничивания недеформирующейся среды и закон Ома в ДПС при этом имеют вид  [c.265]

Такими соотношениями могут служить закон Ома и законы поляризации и намагничивания тела. Эти добавочные соотношения не носят универсального характера, они по своему существу различны для различных тел и процессов. Во многих  [c.310]


Если амплитуда, частота, фаза, направление распространения и поляризация электромагнитной волны постоянны или изменяются, но не хаотически, а упорядоченно, по определенному закону, то такая волна когерентна. Строго монохроматичная волна всегда когерентна, а взаимная когерентность двух не-  [c.117]

I ч II кривая III при ф = 56°40 касается оси абсцисс, т. е. / тр = О, что соответствует полной поляризации отраженного луча (закон Брюстера).  [c.52]

Эту зависимость угла, при котором наблюдается линейная поляризация отраженной волны, от отношения показателей преломления двух исследуемых диэлектриков называют законом Брюстера, а соответствующий угол — углом Брюстера (фвр) В этих обозначениях  [c.85]

Как уже указывалось (см. 2.6), электромагнитное поле характеризуется моментом импульса. Для системы, описанной в терминах фотонной физики, должен удовлетворяться закон сохранения момента импульса. Оценивая проекцию момента импульса фотона на направление импульса, можно получить одно из основных свойств электромагнитного излучения — его поляризацию, которая столь просто вводилась в волновой оптике. Более подробное рассмотрение этого вопроса выходит за рамки нашей книги.  [c.449]

Этим уравнением определяется зависимость частоты волны от волнового вектора об этой зависимости говорят как о законе дисперсии волн, а определяющее его уравнение называют дисперсионным. Уравнение (23,3) — третьей степени по со . Оно имеет три, вообще говоря, различных корня и = со/ (к) — три, как говорят, ветви закона дисперсии. Подставляя поочередно каждый из этих корней обратно в уравнения (23,2) и решая их, мы найдем направления вектора смещения и в этих волнах, — как говорят, направления их поляризации (в силу своей однородности, уравнения (23,2) не определяют, конечно, абсолютной величины век-  [c.131]

Явление поляризации при отражении и его законы можно изучить следующим образом. Пусть параллельный пучок естественного света (рис. 16.2) падает на стеклянное зеркало укрепленное  [c.374]

В рассуждениях, приведших к геометрическим законам, мы не делали никаких предположений, ограничивающих значения составляющих векторных амплитуд и их начальных фаз. Поскольку именно эти величины определяют поляризацию волн, то можно  [c.473]

В отличие от геометрических законов, амплитуды отраженной и преломленной волн зависят от поляризации падающей волны. Из дальнейшего будет видно, что целесообразно раздельно рассматривать два случая, когда электрический вектор либо лежит в плоскости падения, либо перпендикулярен к ней. Другими словами, разложим амплитуды Ei, Ег, Еа на компоненты Е и Ej , лежащие соответственно в плоскости падения и перпендикулярные к ней  [c.474]


Поляризация света при прохождении через границу двух диэлектриков. Наглядная интерпретация закона Брюстера  [c.479]

Как мы видим, формулы Френеля дают возможность рассчитать амплитуду каждой из компонент и в отраженном и проходящем свете, и поэтому они содержат полное решение задачи о степени поляризации отраженного и преломленного света. В них заключаются все законы, уже известные нам из опыта и описанные в гл. XVI. Таким образом, электромагнитная теория света объясняет великое открытие Малюса.  [c.479]

Если ф + it = л/2, то / 1 = о, /г о и л = 100%, т. е. отраженный свет полностью поляризован, причем электрический вектор перпендикулярен к плоскости падения (закон Брюстера). Коэффициенты пропускания t , t не обращаются в нуль ни при каком значении угла падения ф, т. е. полная поляризация проходящего света невозможна. Однако всегда Ea 11 Eai, т. е. Id Idi и Л 0. Это означает, что имеет место частичная поляризация, и притом такая, что преимущественное направление колебаний лежит в плоскости падения.  [c.480]

Для растворов Био (1831 г.) установил на опыте следующие количественные законы угол поворота плоскости поляризации гр прямо пропорционален толщине б, слоя раствора и прямо пропорционален концентрации с активного вещества  [c.612]

Первые индексы у /г и соответствуют среде / или 2, вторые — кратности частоты (например, 12 = 1 (2со), Й21 — волновой вектор преломленной в среде 2 волны с частотой со). Основание к такому выбору вида поля состоит в следующем. Уравнения Максвелла для поля с частотой 2со представляют собой неоднородную систему уравнений, причем источником поля служит нелинейная часть поляризации среды, изменяющаяся по закону  [c.847]

Объяснить, исходя из закона Кирхгофа, тот факт, что при испускании имеет место частичная поляризация, зависящая от угла испускания.  [c.904]

В самом деле, предположим для простоты, что при 5 -распа-де какого-нибудь ядра электрон и антинейтрино вылетают вдоль одного и того же направления (с параллельными или антипа-раллельными импульсами) и что в процессе р -распада спин ядра изменяется на Д/= 1. Тогда из закона сохранения момента количества движения следует, что антинейтрино, электрон и дочернее ядро должны иметь одинаково направленные спины, а из продольной поляризации антинейтрино — продольная поляризация электрона и поляризация дочернего ядра в направлении вылета электрона.  [c.647]

Если считать, что при (я — fi)- и ( х — е)-распадах образуются те же нейтрино и антинейтрино, что и лри 3-распаде , то легко предсказать спиральность , т. е. направление продольной поляризации для всех лептонов. Действительно, в соответствии с законом сохранения лептонного заряда (л+ — j i+)-pa -пад записывается следующим образом  [c.648]

В модели Дебая предполагается, что скорость звука одинакова для всех длин волн и не зависит от направления поляризации, т. е. для трех акустических ветвей справедлив линейный закон дисперсии  [c.171]

В гл. 2 уже рассматривались основные законы оптики — законы отражения и преломления света. Пользуясь принципом Гюйгенса, мы дали формулировку законов и определили направление распространения отраженной п преломленной волн. Однако такие важные вопросы, как интенсивность и поляризация отраженной и преломленной волн, фазовые соотношения на границе раздела двух сред и некоторые другие, остались без рассмотрения. Собственно говоря, ответ на эти вопросы нельзя дать, поскольку принцип Гюйгенса позволяет определить только направление распространения фронта волны, ничего не говоря о других характеристиках воли.  [c.11]

На эти законы поляризация волн не влияет. С другой стороны, непрерывность соответствующих компонент векторов Е и Н приводит к так называемым формулам Френеля, позволяющим рассчитать относительные амплитуды и рш-тенсивности отраженной и прошедшей волн для обеих поляризаций. Выражения оказываются существенно различнымр для параллельной (когда векгор Е лежит в плоскости падения) и иерпепдикулярной поляризации, естесгвении совпадая для случая нормального падения (а = р = 0).  [c.185]


Часто последние два соотношения (22.8), определяющие законы поляризации и намагничив.ания среды, записывают в виде  [c.218]

Анодная поляризация ig алюминия в двух последних (0,1-и 13,5-н.) растворах СН3СООН увеличивает (в соответствии с законами электрохимической кинетики) растворение алюминия и соблюдается условие i = (рис. 187, б). В остальных  [c.280]

Для того чтобы коррозионный процесс оказывал влияние на усталостную прочность, скорость коррозии должна превышать некое минимальное значение. Эти величины удобно определять путем анодной поляризации опытных образцов в деаэрированном 3 % растворе Na l. При этом скорость коррозии рассчитывают по закону Фарадея из плотностей тока и определяют критические значения, ниже которых коррозия уже не влияет на усталостную прочность. (Эти измеренные плотности тока не зависят от общей площади поверхности анода.) Значения минимальных скоростей коррозии при 30 цикл/с для некоторых металлов и сплавов приведены в табл. 7.5. Можно ожидать, что эти значения будут увеличиваться с возрастанием частоты циклов. Для сталей критические скорости коррозии не зависят от содержания углерода, от приложенного напряжения, если оно ниже предела усталости, и от термообработки. Среднее значение 0,58 г/(м сут) оказалось ниже общей скорости коррозии стали в аэрированной воде и 3 % Na l, т. е. 1—10 г/(м -сут). Но при pH = 12 скорость общей коррозии падает ниже критического значения и предел усталости вновь достигает значения, наблюдаемого на воздухе [721. Существование критической скорости коррозии в 3 % Na l объясняет тот факт, что для катодной защиты стали от коррозионной усталости требуется поляризация до —0,49 В, тогда как для защиты от коррозии она составляет —0,53 В.  [c.160]

Дуализм свойств света. При исследовании законов фотоэффекта в опытах по наблюдению рассеяния фотонов на электронах обнаруживается квантовая, корпускулярная природа света. Но вместе с тем свет обнаруживает способность к дифрагсции, интерференции, преломлению, отражению, дисперсии, поляризации и все эти явления полностью объясняются на основе представлений о свете как электромагнитной волне.  [c.304]

Нарушение закона сохранения четности нашло свое объяснение в рамках теории нейтрино, обладающего определенной круговой поляризацией (спиральностью). В этой теории принимается, что нейтрино должно отличаться от антинейтриио круговой поляризацией. Для объясне ния экспериментальных данных нужно было предположить, что нейтрино должно напоминать фотон с левой круговой поляризацией, а антинейтрино — фотон с правой кру-  [c.248]

Законы поверхностного рассеяния отличны от законов объемного рассеяния. Так, интенсивность поверхностно рассеянного света обратно пропорциональна второй степени длины волны (а не четвертой) своеобразны также и условия поляризации рассеянного света. Полная молекулярная теория этих явлений при молекулярных шероховатостях, еще малых по сравнению с длиной волны, находится в согласии с наблюдаемыми на опыте закономерностями (Ф. С. Барышанская, 1936 г.).  [c.584]

Количественные законы явления были установлены еще Фарадеем и наиболее полно исследованы на ряде объектов Верде угол поворота ф плоскости поляризации пропорционален длине пути света в веществе I и напряженности магнитного поля Н,  [c.619]

Из формулы для дифференциального сечения, которую мы не приводим из-за ее сложности, следует, что электроны, освобождающиеся при фотоэффекте, распределены симметрично (по закону os ф) относительно направления электрического вектора Е падающей электромагнитной волны (рис. 82, а). Для неполяризованного излучения (или при круговой поляризации) это приводит к такому угловому распределению, которое пол> -чается вращением рис. 82, а вокруг направления распространения фотонов (пунктирная кривая на рисунке). Из рисунка видно, что электроны могут иметь отрицательную величину проекции импульса на направление распространения фотонов. Очевидно, что это не противоречит закону сохранения импульса, так как фотоэффект идет на электроне, связанном с атомом, который уносит дополнительный импульс.  [c.243]

Возникновение продольной поляризации у электронов в процессе р-распада очевидно из следующего Tipo Toro рассуждения. Рассмотрим случай р-распада °Со, изучение которого привело By и сотр. к обнаружению нарушения закона сохранения пространственной четности в слабых взаимодействиях. Как известно (см. т. I, 17), в этом р-переходе спин исходного ядра (/со = 5) уменьшается на единицу= 4).  [c.248]

Спонтанная поляризация сегнетоэлектриков сильно зависит от температуры. С повышением температуры Р уменьшается и при некоторой температуре 7к, называемой сегнетоэлектрической точкой Кюри, обращается в нуль. Таким образом, при 7 >7 к тепловое движение разрушает сегнетоэлектрическое состояние и сегне-тоэлектрик переходит в параэлектрическое состояние. В параэлек-трической области зависимость е от температуры описывается законом Кюри — Вейсса  [c.301]

Формулы Френеля. Для полного описания явлений, связанных с прохождением света через плоскую границу двух прозрачных сред, помимо законов отрахсения и преломления необходимо указать интенсивность отраженного и преломленного света, состояние его поляризации, фазовое соотношение. Эти сведения можно получить с помощью формул Френеля, выведенных в начале XIX в.  [c.13]

Здесь k — волновой вектор электрона (k=plii) V — объем электронного газа множитель 2 учитывает число спиновых состояний электрона (в случае фотона такой множитель есть число поляризаций). Далее учтем закон дисперсии для свободного электрона  [c.139]



Смотреть страницы где упоминается термин Закон поляризации : [c.312]    [c.312]    [c.280]    [c.36]    [c.226]    [c.219]    [c.376]    [c.471]    [c.474]    [c.856]    [c.119]    [c.248]    [c.191]    [c.866]    [c.33]    [c.35]   
Механика сплошной среды Т.1 (1970) -- [ c.310 ]



ПОИСК



Закон вмороженности и поляризации в тензорной форм

Отступления от закона Ламберта. Поляризация наклонных пучков

Плотности потоков энергии. Коэффициент отражения. Коэффициент пропускания. Закон сохранения энергии. Поляризация света при отражении и преломлении Распространение света в проводящих средах

Поляризация

Поляризация света при прохождении через границу двух диэлектриков. Наглядная интерпретация закона Брюстера



© 2025 Mash-xxl.info Реклама на сайте