Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поляризация частичная

Состояние поляризации частично поляризованного света принято характеризовать значением степени поляризации, определяемой выражением  [c.260]

При этом пучок света, прошедший через поляризатор 5, поляризуется в горизонтальной плоскости (вектор поляризации располагается горизонтально, а световые колебания происходят в вертикальной плоскости). Поляризованный пучок света через анализатор при указанном расположении оптических осей не пройдет и экран освещен не будет. Поляризатор и анализатор, как говорят, установлены на темноту . При нагрузке модель приобретает свойство поворачивать в зависимости от величины напряжений плоскость поляризации проходящего через нее света. Тогда свет с повернутой плоскостью поляризации частично проходит через анализатор, давая на экране изображение исследуемой модели, покрытое системой светлых и темных полос.  [c.556]


Степень поляризации частично поляризованного излучения определяется величиной  [c.19]

Поляризация частичная 127, 449 Поляризованный по кругу свет 131  [c.516]

Во всех других случаях говорят, что поляризация частичная. Ее, однако, можно свести к рассмотренным случаям, что мы сделаем в п. 10, но перед этим рассмотрим, как преобразуются параметры  [c.259]

Степень поляризации частично поляризованного света Р = 0,25. Найдите отношение интенсивности поляризованной составляющей этого света к интенсивности естественной составляющей,  [c.183]

Формула Рэлея перестает быть справедливой, если размеры рассеивающих частиц превосходят одну двадцатую часть длины световой волны. В этом случае наблюдаются следующие отступления от рэлеевского рассеяния а) интенсивность рассеянного света становится обратно пропорциональной не а б) рассеянный свет оказывается поляризованным лишь частично, причем степень поляризации определяется размерами и формой рассеивающих частиц в) индикатриса рассеяния несимметрична по отношению к направлению первичного пучка света и перпендикулярна ему.  [c.314]

Итак, при падении света на границу двух диэлектриков под углом Брюстера отраженная волна полностью поляризована, тогда как преломленная волна оказывается частично поляризованной. Изучение графиков для коэффициентов отражения и пропускания (см. рис. 2. 13) показывает, что при ф = ф р поток отраженной энергии невелик, а главная его часть распространяется в направлении преломленной волны. Поэтому для получения поляризованного света выгодно многократно преломить падающий под углом Брюстера свет, каждый раз увеличивая степень его поляризации. Расчет показывает, что при ф == фвр стопа из 10 стеклянных пластинок дает степень поляризации преломленной волны, близкую к 100%. При этом интенсивность прошедшей радиации заметно больше, чем в отраженной волне. Такой компактный прибор удобен и прост в изготовлении. Он  [c.89]

При падении под углом Брюстера поляризация преломленных лучей максимальная, но далеко не полная (для обычного стекла она составляет около 15%). Если преломленные и, следовательно, частично поляризованные лучи подвергнуть второму, третьему и т. д. преломлениям, то, конечно, степень поляризации преломленных лучей возрастает.  [c.376]

Большинство источников (раскаленные тела, светящиеся газы) испускает свет, близкий к естественному, хотя некоторые следы поляризации почти всегда наблюдаются, что объясняется излучением более глубоких слоев вещества. Это излучение проходит через некоторый слой и испытывает частичную поляризацию, подобную возникающей при прохождении через слой диэлектрика.  [c.379]


Если ф + it = л/2, то / 1 = о, /г о и л = 100%, т. е. отраженный свет полностью поляризован, причем электрический вектор перпендикулярен к плоскости падения (закон Брюстера). Коэффициенты пропускания t , t не обращаются в нуль ни при каком значении угла падения ф, т. е. полная поляризация проходящего света невозможна. Однако всегда Ea 11 Eai, т. е. Id Idi и Л 0. Это означает, что имеет место частичная поляризация, и притом такая, что преимущественное направление колебаний лежит в плоскости падения.  [c.480]

При п = 1,5 (воздух — стекло) имеем приблизительно А = — 8%, т. е. проходящий свет частично (на 8%) поляризован. Если свет проходит внутрь плоскопараллельной пластинки, то на второй поверхности вновь происходит преломление под углом Брюстера и степень поляризации прошедшего через пластинку света увеличивается еще приблизительно на 8%. Если сложить последовательно несколько пластинок (стопа Столетова), то поляризация проходящего света будет быстро возрастать при увеличении числа пластинок в стопе и ее можно вычислить при помощи формул Френеля (см. упражнение 189).  [c.480]

Если угол падения отличается от угла Брюстера, то вдоль ОВ может распространяться волна, содержащая наряду с компонентой р и компоненту а, доля которой будет тем больше, чем больше угол между направлением а и направлением отраженной волны. Таким образом, отраженный свет будет частично поляризован, и степень поляризации возрастает по мере приближения к углу Брюстера.  [c.482]

Зависимость интенсивности рассеянного света от длины волны для таких более крупных частиц становится меНее заметной, т. е. рассеянный свет оказывается менее голубоватым, чем в случае мелких частиц. Рассеянный свет оказывается поляризованным лишь частично, причем степень поляризации зависит от размеров и формы частиц. Распределение интенсивности рассеянного света по углам приобретает также более сложный характер диаграмма  [c.581]

Изложенные выше соображения приводят к выводу, что при /у = О П = 1 (поляризация света достигает 100%). Из опыта же следует, что 1у далеко не всегда равняется нулю свет частично деполяризован. За меру деполяризации обычно принимают  [c.589]

Объяснить, исходя из закона Кирхгофа, тот факт, что при испускании имеет место частичная поляризация, зависящая от угла испускания.  [c.904]

На протяжении всего предыдущего изложения мы неоднократно пользовались понятиями линейной и эллиптической поляризации, естественного и частично поляризованного света, не вдаваясь в детали этих понятий. Теперь более подробно рассмотрим поляризованный свет и познакомимся с оптическими устройствами для его получения.  [c.33]

Как уже отмечалось, если в системе, изображенной на рис. 18.4, убрать поляризатор П] и направить па пластинку естественный свет, то интерференционной картины не будет. Если же на пластинку направить частично поляризованный свет, то через анализатор ГК будет наблюдаться интерференционная картина, хотя и не такая контрастная, как при падении линейно поляризованного света. Таким образом, сочетание кристаллической пластинки и анализатора представляет собой устройство, позволяющее при появлении интерференционной картины обнаруживать частичную поляризацию в падающем свете. Такие устройства называются полярископами. Чувствительность полярископа зависит в первую очередь от конструкции и ориентации кристаллической пластинки (вместо одной пластинки можно применять систему пластинок). Наиболее известен полярископ Савара, в котором используются две кварцевые пластинки равной толщины, вырезанные под углом 45° к оптической оси и сложенные так, чтобы их оси были в скрещенном положении (рис. 18.8). При достаточной яркости исследуемого света с помощью полярископа Савара можно обнаружить степень поляризации порядка 1—2 %. Очевидно, что полярископом можно только обнаружить поляризацию, а для ее количественного измерения необходимо специально проградуированное компенсирующее устройство (например, стопа стеклянных пластинок, по-  [c.60]

Вращение плоскости поляризации имеет место и тогда, когда свет направлен не вдоль оси кристалла, а под углом к ней. Но изучение его в этих условиях значительно труднее, так как явление частично маскируется обычным двойным лучепреломлением. Еще. труднее наблюдать данное явление в двуосных кристаллах, потому что вращение может быть различным вдоль каждой из осей.  [c.72]


ПОЛОСТИ распространяется внутри нее, частично отражаясь от стенок, частично поглощаясь последними. В результате внутри полости установится равновесие между испусканием и поглощением и она будет заполнена электромагнитными волнами разной длины, поляризации и интенсивности, хаотически движущимися во все стороны. Выходя из отверстия, это излучение будет определять испускательную способность абсолютно черного тела, находящегося при температуре Т, равной температуре стенок.  [c.135]

Таким образом, для системы хаотически ориентированных осцилляторов испускание частично поляризовано (Р = 0,5). При возбуждении естественным светом степень поляризации будет ниже. Расчет показывает, что связь между степенью поляризации при возбуждении линейно поляризованным (Рр) и естественным (Рп) светом имеет вид Р = Рр/(2—Рр). Нетрудно видеть, что максимальное значение степени поляризации при возбуждении естественным светом Р=1/3. Опыт показывает, что Р в ряде случаев может принимать и отрицательные значения. Их появление связывается с поглощением света и его испусканием различными осцилляторами в молекулах, расположенными друг к другу под определенным углом а.. Расчеты, выполненные независимо Левшиным и Перреном, приводят к формуле  [c.262]

Реальные поляризов. пучки не обладают полной поляризацией. Частично Поляризованный пучок нейтронов (0 < Р < 1) содержит некогерентную примесь др. спинового состояния. НеполяризоБ. пучок нейтронов (Р = 0) можно рассматривать как состоящий из 2 полностью поляризованных пучков одинаковой интенсив-. Бости с противоположными знаками ноляриэацив, во независимых друг от друга (некогерентных). Спиновое состояние частично поляризованного пучка (смешанное спиновое состояние) описывается не волновой ф-циев (3), а спиновой (поляризац.) матрицей плотности  [c.70]

Для эллиптически поляризованного луча необходимо определить азимут осей, эксцентриситет и направление вращения. Все 4 признака полностью требуются для определения состояния поляризации частично поляризованного луча. Практически (причем иногда без достаточн. оснований) для характеристики частично поляризованного света ограничиваются обыкновенно измерением отношения интенсивностей компонент х и у, или дефекта поляризации,  [c.156]

Фотометрические П.п. — фотометры сравнения, в одну из ветвей к-р .1х включено устройство, позволяющее относит, поворотом поляризатора и анализатора изменять интенсивность светового потока в заданное число раз (см. Малюса закон). Фотометрич. П. п. применяют в пек-рых спектральных приборах для измерения относит, интенсивности спектральных лииий (см. Стилометр), в нек-рых диухлучевых спектрофотометрах и др. приборах. К фотометрич. П. п. может быть отнесен также поляриметр Корню, служащий для измерения степени поляризации частично поляризованного света.  [c.134]

При катодной поляризации хрома, нержавеющих сталей и пассивного железа пассивность нарушается вследствие восстановления пленки пассивирующего оксида или пленки адсорбционного кислорода (в зависимости от принятой точки зрения на природу пассивности). К тому же, согласно адсорбционной теории, атомы водорода, образующиеся при разряде ионов Н+ на переходных металлах, стремятся раствориться в металле. Растворившийся в металле водород частично диссоциирован на протоны и электроны, а электроны способны заполнять вакансии d-уровня атомов металла. Следовательно, переходный металл, содержащий достаточное количество водорода, более не в состоянии хемосорбиро-вать кислород или пассивироваться, так как у него заполнены d-уровни.  [c.98]

В кислой среде (pH < 4) диффузия кислорода перестает быть лимитирующим фактором и коррозионный процесс частично определяется скоростью выделения водорода, которая, в свою очередь, зависит от водородного перенапряжения на различных примесях и включениях, присутствующих в специальных сталях и чугунах. Скорость коррозии в этом диапазоне pH становится достаточно высокой, и анодная поляризация способствует этому (анодный контроль). Низкоуглеродистые стали корродируют в кислотах G меньшей скоростью, чем высокоуглеродистые, так как для цементита Feg характерно низкое водородное перенапряжение. Поэтому термическая обработка, влияющая на количество и размер частиц цементита, может значительно изменить скорость коррозии. Более того, холоднокатаная сталь корродирует в кислотах интенсивнее, чем отожженная или сталь со снятыми напряжениями, так как в результате механической обработки образуются участки мелкодисперсной структуры с низким водородным перенапряжением, содержащие углерод и азот. Обычно железо не используют в сильнокислой среде, поэтому для практических нужд важнее знать закономерности его коррозии в почвах и природных водах, чем в кислотах. Тем не менее существуют области  [c.107]

Анизотропия в электрическом поле. Возникновение анизотропии в электрическом поле было обнаружено Керром в 1875 г. и с тех пор широко используется в технике эксперимента. В настоящее время явление Керра хорошо исследовано как экспериментально, так и теоретически. Это оказалось возможным благодаря тому, что эффект наблюдается в веществах, находящихся в жидком и даже газообразном состоянии, а их изучение несравненно проще изучения твердого тела. Схема опыта относительно проста (рис. 3.10). Между двумя скрещенными поляризаторами Pi и / 2 располагают плоский конденсатор. Между пластинами конденсатора помещают кювету с жидким нитробензолом — веществом, в котором изучаемый эффект весьма велик. При включении напряжения происходит поляризация молекул нитробензола и их выстраивание. Так создается анизотропия вещества с преимущественным направлением (оптической осью кназикрис-талла) вдоль вектора напряженности электрического поля. Так же как и при механической деформации, излучение становится эллиптически поляризованным и частично проходит через второй поляризатор, скрещенный с первым, т.е. установленный так, чтобы не пропускать линейно поляризованный свет. Опыт дает Ап = н,, — п = КЕ , где К — некая константа, как правило, положительная. Однако для некоторых веществ К оказывается меньше О (это значит, что /г > п , т.е. образуется отрицательный квазикристалл).  [c.122]


Что же касается направления колебания в свете, поляризованном при отражении, то исследование (см. 104) показывает, что электрический вектор в отраясенком свете в случае полной поляризации колеблется перпендикулярно к плоскости падения. При частичной поляризации это направление колебаний является преимущественным, хотя в частично поляризованном свете представлены колебания и других направлений.  [c.376]

Конечно, явление вращения плоскости поляризации имеет место и тогда, когда свет направлен не вдоль оси кристалла, а под углом к ней. Но изучение его в этих условиях значительно труднее, ибо явление частично маскируется обычным двойным лучепреломлением. Еще труднее наблюдать явление в двуосных кристаллах, так как вращение может быть различным вдоль каждой из осей. Наконец, известны также некоторые кристаллы кубической системы, не обнаруживающие обычно двойного лучепреломления, но обладающие свойством вращать плоскость поляризации (хлорноватистокислый натрий НаСЮа и бромноватистокислый натрий КаВгОз) в этом случае величина вращения не зависит от ориентации кристалла.  [c.610]

Для системы воздух — стекло при ф = фо степень поляризации Р=—8 %, т. е. преломленный свет частично поляризован, причем колебания электрического вектора расположены в плоскости падения. Если преломленный свет подвершуть многократному преломлению, то его степень поляризации возрастет. Расчет показывает, что при ф = фо стопа из десяти стеклянных пластинок дает степень поляризации преломленного света, близкую к 100 %.  [c.21]

Пластинка Я/4 превращает циркулярно поляризованный свет в линейный так же, как и линейный — в циркулярно поляризованный (две пластинки Я/4 тождественны одной пластинке >./2). Легко определяемое на опыте различие между циркулярным и естественным светом состоит в том, что первый можно преобразовать в линейный с помощью иластиики Я/4, а второй нельзя преобразовать. Частично поляризованный свет от эллиптически поляризованного отличается на опыте тем, что в первом случае при введении перед анализатором пластинки Я/4 не будет никаких изменений в углах ориентации анализатора, при которых получаются максимумы и минимумы интенсивности. Во втором же случае максимуму и минимуму интенсивности будут соответствовать различные положения анализатора в присутствии и отсутствие четвертьволновой пластинки. В этой связи следует напомнить, что любая эллиптическая поляризация может быть получена из двух линейных когерентных компонент двумя способами за счет изменения разности фаз при рав-  [c.53]

Каким бы простым ни казалось наблюдаемое явление, все равно в процессе его все более глубокого исследования понадобятся представления о природе света. Казалось бы, что может быть проще и понятнее отражения света от зеркальной поверхности А ведь при таком отражении происходит частичная поляризация света, иначе говоря, изменяется строение света, его структура. Здесь уже не обойтись без рассмотрения природы света. По этому поводу французский физик Араго (начало XIX в.) писал Отражение света занимало наблюдателей еще со времен Платона и Евклида. Но никто не подозревал в нем ничего большего, как средство отклонять лучи, никто не воображал, что изменение пути может быть причиной изменения природы. ОППОНЕНТ. Ваши замечания вполне убедительны. Однако такой талантливый ис-  [c.9]

Круговая поляризация Отсутствует или частичная Частиц- ная Частич- ная, сильная Слабая Очень сильная Очень слабая Чаетичная  [c.1202]


Смотреть страницы где упоминается термин Поляризация частичная : [c.517]    [c.476]    [c.428]    [c.57]    [c.35]    [c.167]    [c.275]    [c.22]    [c.576]    [c.37]    [c.89]    [c.376]    [c.795]    [c.891]    [c.79]    [c.20]    [c.108]   
Оптика (1985) -- [ c.194 ]

Статистическая оптика (1988) -- [ c.127 , c.449 ]

Распространение и рассеяние волн в случайно-неоднородных средах Т.1 (0) -- [ c.42 ]

Волны (0) -- [ c.393 ]

Теория рассеяния волн и частиц (1969) -- [ c.19 ]



ПОИСК



Матричный метод расчета многослойных пленок. Многослойные диэлектрические зеркала. Полупрозрачные материалы Частичная когерентность и частичная поляризация

Поляризация

Частичная

Частичная поляризация и естественный свет



© 2025 Mash-xxl.info Реклама на сайте