Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пучок когерентный когерентный

Первое слагаемое в правой части этого соотношения отвечает когерентному сложению колебаний с интенсивностями у (т) у (т)/2 и разностью фаз ф (т), второе слагаемое — полностью некогерентному сложению колебаний с интенсивностями [1 —у (t)1/i, [1 — у (xjl/.j. Можно считать поэтому, что свет в точке М интерференционной картины как бы состоит из когерентной и некогерентной частей, причем доля когерентного света равна у (т). Обсуждаемое соотношение уже было получено в 13 с помощью элементарных соображений, основанных на представлении о разделении света интерферирующих пучков на когерентную и некогерентную части (ср. (13.5)). Анализ, проведенный в данном параграфе, устанавливает точный смысл такого разделения.  [c.96]


Уменьшение видимости полос при интерференции немонохроматических пучков объяснялось в 21 иным способом, а именно, предполагалось, что они являются суперпозицией монохроматических пучков с различными частотами (или длинами волн). Естественно возникает вопрос о взаимоотношении спектрального подхода, изложенного в 21, и временного подхода, использующегося в данном параграфе. Для выяснения этого вопроса напомним, что строго гармоническое (монохроматическое) колебание, по самому своему определению, должно происходить бесконечно долго. Если колебание следует гармоническому закону в течение ограниченного промежутка времени, по истечении которого изменяются его амплитуда, частота или фаза (волновой цуг), то это модулированное колебание можно представить в виде суммы монохроматических колебаний с различными частотами, амплитудами и фазами. Но такое разложение волновых цугов на монохроматические составляющие и дает основу для представления об интерференции немонохроматических пучков. Итак, спектральный и временной подходы к анализу интерференции оказываются разными способами рассуждений об одном и том же явлении, —нарушении когерентности колебаний ).  [c.99]

Лазер излучает световой луч в виде нескольких пучков, и по.этому еще одно требование, предъявляемое к лазерам, связано с пространственной когерентностью их излучения, которая определяется степенью интерференции этих отдельных пучков. Пространственная когерентность не влияет на качество голограммы, если лучи из разных пучков не перемешиваются и при записи происходит их полное совмещение.  [c.35]

Пучок излучения когерентного источника (см. рис. 7, г) претерпевает дифракцию иа изделии и в плоскости сканера образуется дифракционное изображение изделия, соответствующее дифракции Фраунгофера. Дифракционное  [c.64]

Оптическая схема типичной модели двухлучевого микроинтерферометра МИИ-4 показана на рис. 22, а. От лампы 1 через конденсор 2, апертурную диафрагму 3, полевую диафрагму 4 и объектив 5 пучок лучей падает на пластину 8 с полупрозрачным слоем и разделяется на два пучка когерентных лучей примерно одинаковой интенсивности.  [c.91]

Параметры Лазеров подразделяются на внешние и внутренние. Внешние параметры характеризуют излучение, вышедшее из лазера внутренние связаны с процессами, происходящими внутри резонатора с рабочим веществом. К внешним основным параметрам относятся энергия и мощность излучения, длительность импульса, угловая расходимость пучка света, когерентность излучения и поляризации. Помимо этого в ряде случаев необходимо знать распределение энергии и мощности внутри пучка, его спектральный состав и изменение во времени, а также изменение угловой расходимости в ближней и дальней зонах. К внутренним параметрам относятся спектр мод резонатора, усиление и шумы в ряде случаев требуется знать также порог генерации и насыщение. Различные типы лазеров имеют различные параметры, определяющие области их применения в науке и в технике, и в частности в машино-и приборостроении.  [c.19]


Лазерный луч в турбулентной атмосфере. При прохождении лазерного луча в турбулентной атмосфере наблюдаются [32] флуктуации фазы в световом пучке, нарушение когерентности, изменение средней интенсивности излучения на неоднородной трассе, случайные смещения центра тяжести светового пучка, сопровождаемые дрожанием лазерных пучков. Все эти эффекты существенны только при большом ходе х лазерного луча. Кроме того, в интерферометрии наиболее важна разность параметров двух интерферирующих лучей. Отсюда целесообразно обеспечить прохождение этих лучей по возможно более близким направлениям, чтобы не нарушать их когерентность.  [c.93]

Основная схема воспроизводится в упрощенном виде на рис. 5.13. Объект представлен в виде транспаранта, который передает комплексную амплитуду /(х) для упрощения математических выкладок взято только одно измерение. Транспарант освещается падающим на него перпендикулярно светом, например от системы лазер-расширитель пучка, создающей когерентное освещение плоской волной. На дифракционной плоскости мы имеем преобразование Фурье от транспаранта  [c.109]

Порядок изложения материала в данной книге соответствует рассмотрению лазера (на что мы указывали выше в этой главе) как устройства, состоящего из следующих трех основных элементов 1) активной среды, 2) системы накачки и 3) подходящего резонатора. Поэтому следующие три главы посвящены соответственно взаимодействию излучения с веществом, процессам накачки и теории пассивных оптических резонаторов. Общие представления, данные в этих главах, используются затем в гл. 5 при рассмотрении теории непрерывного и переходного режимов работы лазеров. Теория развивается в рамках приближения низшего порядка, т. е. на основе скоростных уравнений. Такое рассмотрение действительно позволяет описать большинство характеристик лазера. Очевидно, лазеры, в которых применяются разные активные среды, существенно различаются по своим характеристикам. Поэтому естественно, что следующая глава (гл. 6) посвящена обсуждению характерных свойств отдельных типов лазеров. К этому моменту читатель уже будет достаточно подготовлен к тому, чтобы понять принцип действия лазера и перейти к изучению характерных свойств выходного лазерного пучка (когерентности, монохроматичности, направленности, яркости, шумовых характеристик). Эти свойства мы  [c.23]

Преимущества голограммы с локальным опорным пучком обусловлены тем, что опорная волна формируется из объектной. Это означает, что опорная и объектная волны проходят одинаковые расстояния от источника и, следовательно, можно смягчить требования к временной когерентности источника. В данном случае можно записать голограмму протяженного объекта, и при этом не нужно обеспечивать одинаковые длины оптического пути опорной и объектной волн или использовать источники света с очень большим временем когерентности.  [c.236]

На рис.З приведена схема простой голографической установки для получения контурных карт рельефа. Объект помещается в иммерсионную кювету, которая наполнена прозрачным веществом с показателем преломления Пу. Объект освещается коллимированным пучком когерентного света с помощью светоделителя через прозрач-  [c.658]

Принцип распределенной обратной связи можно пояснить с помощью рис. 2.26. Пучок когерентного света лазера накачки  [c.98]

Так, для пучка когерентного излучения СОг-лазера на основном изотопе (Rk = Roj Х=10,6 мкм) на уровне моря для стандартных метеоусловий получаем, что 1 п 160 Дж.  [c.30]

Дифракция света от двух щелей. При рассмотрении дифракции плоской световой волны от щели мы видели, что распределение интенсивности на экране определяется направлением дифрагированных лучей. Это означает, что перемещение щели паралельно самой себе влево и вправо по экрану 5, (см. рис. 6.17) не приводит к какому-либо изменению дифракционной картины. Следовательно, если на з <ране Эх сделать еще одну щель, параллельную первой, такой же ширины h, то картины, создаваемые на экране каждой щелью в отдельности, будут совершенно одинаковыми. Результирующую картину можрю определить путем слол<ения этих двух картин с учетом взаимной интерференции волн, идущих от обеих щелей. Направим параллельный пучок когерентного света на непрозрачный экран с двумя идентичными щелями шириной Ь, отстоящими друг от друга на расстоянии а (рис. 6.24). Очевидно, в тех направлениях, в которых ни одна из щелей не распространяет  [c.143]


Разобьем какой-нибудь пучок естественного света на два когерентных пучка, прибегнув к одной из общеизвестных интерферометрических схем. Встречаясь, пучки дают обычную интерференционную картину, например с максимумом в центре поля. Теперь поместим на пути одного из интерферирующих пучков естественного света полуволновую кристаллическую пластинку К, и введем во второй пучок соответственно подобранную стеклянную пластинку Я, обеспечивающую компенсацию образовавщейся разности хода (рис. 18.3). Теперь встречающиеся интерферирующие пучки, оставаясь когерентными, не дают ожидаемой интерференционной  [c.394]

Рассмотрим следующий опыт. Разобьем пучок естественного света на два когерентных пучка с помощью одной из интерференционных схем (см. 4.2). Встречаясь, два пучка дадут обычную интерференционную картину, например с максимумом в центре поля. Поместим на пути одного из интерферирующих пучков естественного света кристаллическую пластинку К1 в полволны (рис. 18.5, ц). Для компенсации возникшей разности хода во второй пучок введем стеклянную пластинку Кг-В таких условиях два интерферирующих пучка, оставаясь когерентными, при встрече не дают интерференционной картины поле оказывается равномерно освещенным.  [c.57]

Кроме рассмотренной схемы ЛДИС в лазерной анемометрии широко используется схема с двумя зондирующими лучами (рис. 11.13). В этой структурной схеме элементы, которые выполняют одинаковые функции с элементами, представленными на схеме рис. 11.12, обозначены одними и теми же цифрами. Исследуемый поток 4 зондируется двумя пучками когерентного света, направляемыми при помощи передающей аппаратуры 3. В отличие от ранее приведенной схемы в блок выделения ДСЧ 8 направляется только рассеянный свет при помощи приемной аппаратуры 5, в котором содержатся две волны, рассеянные от двух зондирующих пучков.  [c.230]

Даваемые объективами 6 и 10 вторичные изображения полевой диафрагмы проектируются на испытуемую поверхность 7 и зеркало 11. Компенсационная пластина 9 уравнивает длины хода в стекле двух пучков лучей. Отразившись от испытуемой поверхности и зеркала, пучки лучей, вновь пройдя микрообъективы 6 и 10, соединяются полупрозрачной пластиной 8 и объективом 13 вместе с зеркалом 14 направляются в окуляр 12, в фокальной плоскости которого и наблюдается изображение испытуемой поверхности и система интерференционных полос, образованная соединившимися пучками когерентных лучей. При фотографировании интерференционной картины зеркало 14 выводят из хода лучей и с помощью объектива 15 и зеркала 17 лучи направляют на фотопленку, помещенную в кадровом окне 16. Разность хода когерентных световых пучков создается децентрированием объектива 10. Оно вызывает разделение зрачков выхода оптической системы и тем самым создает в поле интерференции переменный наклон пучков, которые разделяет и собирает в фокальной плоскости объектив 13.  [c.92]

Оптическая диагностика двухфазных сред, бурно развивающаяся в последнее время, использует лазерные доплеровские анемометры по дифференциальной схеме (ЛДА) и лазерные решеточные анемометры (ЛРА). Различие между ними заключается в том, что пространственная решетка — модулятор в первом приборе формируется за счет интерференции двух когерентных лучей лазера в потоке, а во втором — либо проецируется в поток оптической системой, либо создается на фотоприемнике рассеянного света. Отсюда следует, что ЛРА не требует когерентного источника света и поэтому соответствующий прибор более прост по оптической схеме. Однако в связи с тем, что интерференция двух гауссовских пучков когерентного света дает решетку с синусоидальным пространственным распределением освещенности, ЛДА имеет более чистый сигнал с малым содержанием гармоник. В ЛРА обычно используют решетку с пространственным распределением освещенности (пропускания) в виде меандра, но сигнал содер-.жит высшие гармоники, т. е. менее чист . Энергетическая оценка ЛДА и ЛРА показывает, что при равных условиях ЛДА требует в 2 раза менее мощный источник света, так как при интерференции пучков в месте максимальной осве-сЩеиности пространственной решетки волны света складываются, тогда как в ЛРА половина мощности источника пропадает — затеняется пространственной решеткой-модулятором. Сравнительная оценка ЛДА и ЛРА, использующих одну и ту же оптику, проведена в [35, 122].  [c.52]

В К. с. к. р. регистрируют рассеянный сигнал в специально выбранном спектральном диапазоне, свободном от засветок возбуждающего излучения и паразитных некогерентных эффектов типа люминесценции (обычно используется антистоксова спектральная область). Высокая коллимировапность пучка когерентно рассеянного излучения позволяет эффективно выделять полезный сигнал на фоне некогерентных засветок и помех при использовании в качестве источников зондирующего излучения узкополосных стабилизироваи-ных лазеров достигается высокое спектральное разрешение полос КР, определяемое свёрткой спектров источников. Благодаря интерференц. характеру формы спектральной линии с помощью К. с. к. р. удаётся наблюдать интерференцию нелинейных резонансов разной природы (в частности, электронных и колебат. резонансов в молекулярных средах). Исключительно высокая разрешающая способность отд. модификаций К. с. к. р. путём подбора условий интерференции даёт возможность выявлять скрытую внутр. структуру неоднородно уширенных полос рассеяния, образованных наложившимися друг па друга линиями разной симметрии. Многомерность спектров К. с. к. р. обеспечивает значительно более полное, чем в спектроскопия спонтанного КР, изучение оптич. резонансов вещества. В К. с. к. р. разработаны методы получения полных комбинац. снектров за время от 10 с до 10 с.  [c.391]

Рис. 45. Схема регистрации голограммы распределения поля СВЧ диапазона в раскрыве антенны А. Генератор G задает колебания, которые испускает в пространство излучатель S через антенну А. Поле вблизи раскрыва антенны сканируется приемником R по некоторой траектории Z. В смеситель М подаются сигналы приемника R и референтный сигнал генератора G. Результат интерференции этих сигналов модулирует световой пучок Р, сканирующий фотопластинку Р синхронно с движением приемника R. При реконструкции полученной таким образом голограммы пучком когерентного света I восстанавливается оптическая модель поля антенны как в раскрыве Л, так и в пространстве (волны и U 2). В фокальной плоскости линзы L получают оптическую модель распределения поля СВЧ В дальней зояе Рис. 45. Схема регистрации голограммы распределения поля СВЧ диапазона в раскрыве антенны А. Генератор G задает колебания, которые испускает в пространство излучатель S через антенну А. Поле вблизи раскрыва антенны сканируется приемником R по некоторой траектории Z. В смеситель М подаются сигналы приемника R и референтный сигнал генератора G. Результат интерференции этих сигналов модулирует световой пучок Р, сканирующий фотопластинку Р синхронно с движением приемника R. При реконструкции полученной таким образом голограммы <a href="/info/367740">пучком когерентного</a> света I восстанавливается <a href="/info/362566">оптическая модель</a> поля антенны как в раскрыве Л, так и в пространстве (волны и U 2). В <a href="/info/402214">фокальной плоскости линзы</a> L получают <a href="/info/362566">оптическую модель</a> распределения поля СВЧ В дальней зояе

Это уравнение является основным в методе Габора. Если такое распределение освещенности зафиксировать на фотопленке, а затем полученную запись осветить пучком когерентного света, то часть результирующего поля будет описываться слагаемым u u, которое представляет собой восстановленную часть недифрагированного поля с ненулевой пространственной частотой. Рассматривая вместе слагаемые и и и ] и , мы получаем волну, которая кажется испущенной мнимым изображением объекта So+S, расположенным в том же месте, что и сам объект.  [c.15]

Первые достижения, которые, по-видимому, лучше рассматривать как предварительные, появились в результате ми ни-воз рождения голографии. В 1955 г., занимаясь радиолокацией, мы вновь открыли габоровский процесс голографии. В нашей теории было показано, что если принимаемые радаром отраженные сигналы записать на фотопленку или аналогичный оптический транспарант и затем осветить этот транспарант пучком когерентного света, то дифрагированные световые волны будут миниатюрными копиями излученных радаром исходных волн, которые попадают на приемную апертуру радара. В первоначально развитой теории рассматривалась система как с обычной реальной антенной, так и с синтезированной апертурой. Естественно, с точки зрения голографии неважно, записывались ли волновые фронты одновременно (реальная апертура) или последовательно (синтезированная апертура). Мы разработали подробную теорию голографии, причем наша работа во многом шла параллельно с оригинальной работой Габора, в то время для нас неизвестной.  [c.16]

Таким образом, при записи голограммы объект помещается в плоскости Xiffi и освещается коллимированным пучком когерентного света (мы используем здесь для простоты рассмотрения коллимированный пучок, однако можно применять и неколлимированный пучок, но при выполнении условий для дальней зоны). Записывается голограмма в плоскости отстоящей от объекта на расстояние г (рис. 1). Будем полагать, что объект описывается распределением амплитудного пропускания 5 (х , у ) и освещается волной с единичной амплитудой и длиной волны %. (Мы здесь будем следовать рассмотрению, приведенному Тайлером и Томпсоном [7].) При этом распределение комплексных амплитуд поля в плоскости регистрации R(Xi, г/2) определяется, согласно принципу Гюйгенса — Френеля, выражением  [c.173]

В предыдущем разделе отмечалось, что голографирование объектов представляет собой полезное дополнение к фотограмметрии, и фотограмметрические методы определения координат точек можно применять для получения количественной информации на основании мнимого изображения объекта. Если объект либо слишком мал, либо слишком велик, чтобы можно было с достаточной степенью точности получить его контурную карту, то приходится прибегать к некоторому пересчету, который позволил бы сделать задачу удобной для извлечения информации, В частности, при больших размерах объекта его невозможно осветить когерентным светом, и необходимо производить некоторую промежуточную регистрацию данных. Эту промежуточную запись можно преобразовать в мнимое голографическое изображение, содержащее (с определенной субъективной точки наблюдения) информацию о рельефе поверхности объекта. В последние несколько лет был предложен ряд методов синтезирования трехмерных мнимых изображений, восстановленных с голограмм, на которых записаны изображения набора двумерных фотографий объекта. Такие голограммы можно отнести к классу составных. Кольер и др. [2] определили составную голограмму как совокупность небольших голограмм, расположенных в одной плоскости, причем каждая из них находится близко к соседней или перекрывается с ней. Волновые фронты, записанные на отдельных голограммах, не обязательно являются непрерывными или когерентными друг с другом. Однако при освещении восстанавливающим пучком одновременно всей такой голограммы, волновые фронты, записанные на отдельных небольших голограммах, взаимодействуют и образуют изображение, которое субъективно воспринимается как трехмерное. Варнер [101 дал хороший обзор этих методов. Дополнительную информацию по составным голограммам можно найти в 5.5. Как правило, эти методы были предложены в качестве новых средств записи и наблюдения стереоизображений или же как методы уменьшения информационной емкости, для того чтобы можно было передавать голограмму трехмерного изображения по электрическим каналам связи. Исключением являются голографические стереомодели, которые предназначаются для последующей обработки и синтезируются с выполнением определенных требований.  [c.684]

Метод большой линзы был исследован Лейтом, Бруммом и Хсиао. В этом методе (рис. 85, а) объект 1 освещается пучком когерентного света 5. Лучи, отраженные от объекта 1, фокусируются большой линзой 2 на кинопленку 3, куда также падает опорный пу  [c.145]

Накачка активной среды АС осуществлялась отдельным источником с длительностью излучения 1 мс. Сигнальный пучок 3, когерентный с пучками накачьси, вводился внутрь резонатора по его оси через зеркало Зг и отверстие От в юстировочном экране Э. Пройдя кювету с нелинейной жидкостью, он частично отражался от ее задней полупрозрачной зеркальной стенки 3i, образуя пучок З. В результате четырехволнового смешения по попутной схеме возникал пучок 4, обращенный по отношению к сигнальному пучку 3. Для этого направления распространения четверки взаимодействующих пучков 1, 2, З и 4 выбирались такими, чтобы их волновые векторы лежали на конусе синхронизма (п. 1.1.3), показанном на рис. 1.36.  [c.212]

Можно с уверенностью утверждать, что наиболее популярным и далеко продвинутым приложением четырехволнового смешения является использование пучков с обращенным волновым фронтом для исключения возмущений, возникающих при прохождении излучения через оптические элементы, волоконные линии связи, атмосферу. Исходной была так называемая двухпроходовая геометрия по схеме встречного четырехпучкового взаимодействия (п. 1.1.3), в которой сигнальный пучок, несущий полезную информацию, проходил через искажающие среды или элементы. Рождающийся обращенный пучок возвращался неискаженным в область излучения или сопряженную с ней с помощью полупрозрачного расщепителя пучков. Однако при этом, как не раз отмечалось, источник излучения по сути говорит сам с собой . Хотя бы для частичного преодоления этого недостатка схем связи с обращающими зеркалами были предложены различные варианты однопроходовой геометрии (см. [22, 23] и список литературы в них). К сожалению, помимо неизбежно возникающих ограничений на передаваемую информацию и полноту сопряжения все они страдают общим недостатком для высококачественного обращения волнового фронта необходимо после одного прохода наряду с искаженным сигнальным пучком иметь когерентные с ним неискаженные пучки накачки. Такие условия легко реализуются в лабораторных условиях, но не при прохождении пучков сквозь атмосферу либо по волоконным линиям, длина которых много больше длины когерентности излучения накачки.  [c.222]

В простейшем варианте пучок непрерывного лазера пропускается через кристалл ВаТЮз, в котором он испытывает сильное ослабление в результате светоиндуцированного рассеяния ( 2.2). Достижение нужной степени ослабления осуществляется управлением усиления за проход при изменении угла падения пучка на кристалл. Пучок легко ослабляется в десятки раз. Допустимые пределы интенсивности 1 I 100 Вт/см . Нижний предел определяется темновой проводимостью ( 2.1), верхний — тепловым разрушением сегнетоэлектрической фазы (для ВаТЮз точка Кюри равна Т 120 °С). Свет, выводимый из пучка, не поглощается, а только изменяет направление своего распространения. Необходимые потери связаны лишь с записью решеток. Естественно, что некогерентный свет в указанном процессе не участвует. При необходимости эффективного использования всего излучения (в том числе и выводимого из падающего пучка) выгоднее использовать двухпучковые схемы, а также все схемы саКюнакачиваю-щихся лазеров на четырехволновом смешении. В эксперименте пучок Аг -лазера (488 нм, 12 мВт) фокусировался на кристалле ВаТЮз. прозрачность которого через 120 мс выходила на стационарное значение 2 % в схеме с рассеянным светом и 5 % в схеме с ФРК-лазером с полулинейным резонатором (отметим более эффективное ослабление пучка в отсутствие лазерной генерации). Описанный нелинейный ограничитель мощности лазерных пучков обладает рядом достоинств [14] работа во всем видимом и ближнем ИК диапазонах, возможность одновременного ослабления нескольких пучков с различными углами падения и/или длинами волн (в том числе с малыми длинами когерентности), многократное использование одного кристалла путем стирания наведенных решеток и др.  [c.238]


ГО света и теплофизических характеристик используемого материала. Положение существенно изменяется при переходе к другому классу задач управления пучками когерентного оптического излучения—его применению в технике связи, в первую очередь — в воле. Разработка ВОЛС уже перешла на уровень осуществлен-ности экспериментальных систем многосоткилометровой протяженности с весьма широкой полосой частот. В обычных системах связи ширина полосы лежит в пределах 10% от несущ,ей, что составляет 10 Гц н заведомо превышает полосу частот, которая может потребоваться в ближайшем, а возможно, и в сравнительно отдаленном будущ,ем. Тем не менее уже сейчас в системах микроволнового диапазона реализуются полосы частот в несколько гигагерц, а при освоении ВОЛС вероятно использование полос шириной в десятки гигагерц.  [c.217]

Все эти недостатки пытались устранить многие оптики, однако прошло около 15 лет, прежде чем удалось возродить идею Габора. Решаюш,им толчком к этому послужила деятельность двух радистов, Иммета Лейта и Юриса Упатниекса, которые осуществили синтез теории связи и оптики. Лейт и Упатниекс, используя понятия и принципы однополосной модуляции в технике связи, ввели наклонный пучок, создающий когерентный фон, и этим самым полностью устранили недостатки первоначальной схемы Габора. Большую роль сыграл лазер, который к 1962 г. стал распространенным источником интенсивных когерентных пучков света. Спустя год Лейт и Упатниекс демонстрировали с помощью двухлучевой голограммы высококаче-  [c.6]

Электронное устройство по принципу работы подобно электронному теневому микроскопу, но с тем существенным отличием, что оно работает при когерентном освещении и в таких условиях, в которых теневой микроскоп не применяют, так как интерференционная картина имеет слишком мало сходства с объектом. Электронная пушка с подходящей диафрагмой и системой электронных линз создает когерентный освещающий пучок с точечным фокусом. На небольшом рас-СТ05ШИИ от точечного фокуса за ним устанавливают объект, а на сравнительно большом расстоянии - фотопластинку. Угол расходимости пучка Vm должен обеспечивать требуемый предел разрешающей способности с(4, который согласно формуле Аббе равен  [c.44]

Оптическая однополосная модуляция с подавлением несуш ей (ОППН) выгодна при передаче информации в системах с оптическим гетеродинным детектированием [65]. Пользуясь на входе одночастотным световым пучком большой мощности, можно также добиться эффективного преобразования в излучение со сдвинутой частотой [72]. Это применяется для генерации входных пучков со смешанными частотами, смещенными относительно частоты лазера, но так, что пучки когерентны с лазерным источником. Во всех таких случаях желательно измерять степень подавления несущей и нежелательной боковой полосы.  [c.495]

Сопоставление режимов теплового самовоздействия по степени проявления нелинейности можно провести в терминах пороговой мощности Gn, эффективной длины тепловой рефракции (самовоздействия) LT = Ld(Gn/G) /2 или параметра нелинейности R = = G/Gn, которые используются в научной литературе по обсуждаемой проблеме. Здесь Ld —параметр дифракции, равный kRl и kRoR, соответственно для пучков когерентного и частично когерентного излучения (с радиусом пространственной когерентности Rk). Чем ниже пороговая мощность Gn или чем короче эффективная длина теплового самовоздействия Lt для фиксированной мощности  [c.29]

Кристаллические иейтроиные фильтры. Для системы беспорядочно ориентированных кристаллитов в по-ликристаллическом нейтронном фильтре условие Вульфа — Брегга удовлетворяется только для нейтронов с длиной волны К<а2с1щ, гда — максимальное меж-плоскостное расстояние кристаллической решетки. При прохождении пучка нейтронов через такой фнльтр из пучка вследствие когерентного рассеяния будут выводиться нейтроны с К< 2 т- Ослабление нейтронов с К > 2йщ происходит за счет процессов некогерентного упругого рассеяния, теплового неупругого рассеяния и поглощения. Для многих веществ сечения последних трех процессов много меньше, чем сечение когерентного рассеяния, поэтому в пучке, прешедшем через фильтр, практически отсутствуют нейтроны с K< 2d .  [c.929]

Голографические вогнутые дифракционные решетки. Если сферическую заготовку, покрытую слоем фоторезистного материала (т.е. материала, изменяющего свойства под действием света), освещать двумя параллельными пучками когерентного излучения, образующими с нормалью к оси заготовки угол а, то после соответствующей обработки экспонированного слоя на поверхности сферы образуется периодическая структура (называемая голографической решеткой) с прямыми штрихами и с периодом d = /./2sin а, равным расстоянию между максимумами образовавшейся интерференционной картины. Такая решетка (тпп I) по своим свойствам и величине аберраций эквивалентна обычной нарезной сферической решетке.  [c.295]

При освещении сферической заготовки двумя расходящимися пучками когерентного света от источников, расположенных на круге Роуланда, получается решетка с криволинейными неэквидистантными штрихами.  [c.295]


Смотреть страницы где упоминается термин Пучок когерентный когерентный : [c.214]    [c.18]    [c.68]    [c.114]    [c.118]    [c.128]    [c.23]    [c.202]    [c.237]    [c.122]    [c.6]    [c.23]    [c.88]    [c.241]   
Теория рассеяния волн и частиц (1969) -- [ c.216 ]



ПОИСК



Когерентная (-ое)

Когерентность

Нарушение пространственной когерентности в лазерных пучках

Пространственная когерентность и средняя интенсивность излучения в лазерных пучках, распространяющихся в турбулентной атмосфере

Пуйе

Пучки с полной пространственной когерентностью

Пучки с частичной пространственной когерентностью

Пучок когерентный

Пучок когерентный

Пучок когерентный некогереитный

Пучок когерентный со спином

Пучок сил

Самовоздействие многомодового частично когерентного пучка

Специфика самовоздействия частично когерентного пучка

Стационарное самовоздействие частично когерентного пучка

Степень взаимной когерентности пучко

Степень внутренней когерентности пучка

Степень когерентности светового пучка

Угловая расходимость когерентного пучка бегущих волн



© 2025 Mash-xxl.info Реклама на сайте