Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контроль спектральный

При сравнении предельно допустимых значений интегральных параметров по ГОСТ и СН видно, что существует незначительное отличие для вибрационных параметров в случае общей вибрации и существенное — в случае локальной- ГОСТ 12.1.012—78 рассматривает все три метода контроля (спектральный, корректированный по частоте и дозе) как равноценные. СН отдает предпочтение спект-  [c.13]

Различают две разновидности фотоэлектрических пирометров. К первой из них относятся пирометры, использующие сравнительно узкий спектральный интервал с эффективной длиной волны 7 = = 0,65 мкм (как и у оптических пирометров). Во второй разновидности фотоэлектрических пирометров используются щирокие -спектральные интервалы с различными значениями эффективной длины волны, зависящими как от спектрального состава излучения объекта измерения, так и от спектральных свойств применяемого фотоэлемента. Отсутствие в настоящее время полных сведений о значениях степени черноты тел в различных интервалах длин волн создает серьезные трудности для пересчета яркостной температуры, измеренной пирометрами этой разновидности, на действительную, поэтому такие пирометры используют главным образом для контроля температуры, когда знание действительной температуры необязательно.  [c.187]


Основными информационными параметрами объектов оптического контроля являются их спектральные и интегральные фотометрические характеристики, которые в общем случае зависят от строения вещества, его температуры, физического (агрегатного) состояния, микрорельефа, угла падения излучения, степени его поляризации, длины волны.  [c.48]

К достоинствам подобных систем относятся повышенное по сравнению с обычными микроскопами разрешение, возможность регулирования яркости, контраста и масштаба изображения электронным способом, большой динамический диапазон (до 60 дБ и более). Для контроля материалов, прозрачных только в инфракрасном диапазоне спектра (кремний, германий, арсенид галлия), применяют лазеры, излучающие на соответствующих длинах волн, в сочетании с фотоприемниками, обладающими нужной спектральной чувствительностью. Возможно исследование объектов в поляризованных лучах, контролирование в них напряжений методом фотоупругости, а также исследование магнито- и электрооптиче-ских свойств материалов при использовании соответствующих источников электромагнитных полей.  [c.96]

Белизна проявителей определяется как относительное отражение, которое представляет собой отношение всего отраженного светового потока к падающему световому потоку. Белизна измеряется в установленном спектральном диапазоне и служит для характеристики белых проявителей. Визуальный контроль проявителя проводят следующим образом. На металлический лист наносится проявитель слоем достаточной толщины, после этого проявитель рассматривается при дневном свете и сравнивается визуально с образцами белизны, в ка-  [c.158]

Возможность применения спектрального анализа сигналов ВТП определяется тем, что в процессе воздействия монохроматического электромагнитного поля на объект в сигналах ВТП появляются составляющие частот, отличающиеся от частоты первой гармоники генератора. Это может происходить за счет проявления нелинейных свойств материала изделия или за счет изменения во времени каких-либо факторов контроля. В первом случае возникают кратные гармоники основной частоты, которые несут дополнительную информацию о свойствах объекта. Метод, основанный на анализе параметров кратных гармонических составляющих, называется методом высших гармоник. Он получил применение при контроле ферромагнитных материалов. Во втором случае возникает модуляция выходного напряжения ВТП изменяющимися параметрами объекта, возникает спектр частот сигнала. Метод, основанный на обработке спектра модуляционных колебаний, называют модуляционным.  [c.136]


Колебания объекта контроля возбуждают путем удара, после чего объект колеблется свободно. Воспринимают колебания с по-мош,ью микрофона и частотного анализатора. Измеряемые характеристики — основная частота, спектральный состав колебаний, их длительность.  [c.126]

Перспективный способ изучения структуры металла — спектральное исследование донного сигнала. Изучение изменения спектра широкополосного импульса в результате разного затухания различных частотных составляющих дает значительно большую информацию о структуре, чем контроль на одной частоте.  [c.420]

Испытания эффективности и качества протекторов ограничиваются в основном аналитическим контролем химического состава сплава, проверкой качества и наличия покрытия на держателе, определением достаточности сцепления между держателем (креплением) и протекторным материалом и контролем соблюдения заданной массы и размеров протектора. Испытания магниевых и цинковых протекторов регламентируются нормативными документами [6, 7, 22, 28]. Аналогичных нормативов но алюминиевым протекторам не имеется. Кроме того, указываются и минимальные значения стационарного потенциала [il6]. Нормативы по химическому составу обычно представляют собой минимальные требования, которые обычно превышаются у всех сплавов, имеющихся на рынке. К тому же регламентированные в этих документах способы мокрого химического анализа в техническом отношении за прошедшее время устарели. Протекторные сплавы в настоящее время более целесообразно исследовать методами эмиссионного спектрального анализа или атомной абсорбционной спектрометрии (по спектрам поглощения).  [c.196]

Результаты контроля качества просвечиваемых изделий определяются взаимодействием ряда параметров, зависящих от вида источника излучения, свойств изделия и детектора излучения. Основные параметры источников излучения — энергия, спектр ее распределения, мощность экспозиционной дозы (МЭД) изделия и дефектов — атомный номер, плотность, линейный коэффициент ослабления, дозовый фактор накопления детектора — спектральная чувствительность, контрастность и разрешающая способность процесса контроля — абсолютная и относительная чувствительность, производительность контроля.  [c.18]

Радиационный контроль осуществляется с помощью специальных приборов. Промышленностью выпускаются дозиметрические приборы трех классов первый класс — дозиметры для измерения экспозиционных или поглощенных доз или мощностей доз второй—радиометры для измерения активности изотопов и интенсивности ионизирующих излучений третий — спектрометры для измерения энергии и определения спектрального состава излучения. По своему конструктивному исполнению приборы подразделяются на индивидуальные, носимые, переносные и стационарные.  [c.144]

Однако и при 100%-ном определении марки материала прибором ИЭ выборочный контроль на стилоскопе является обязательным. Во многих случаях применяют параллельный контроль двумя методами спектральным  [c.90]

К этой группе методов контроля толщины покрытий относится микроскопический метод, метод хорды и спектральный метод.  [c.105]

В настоящее время спектральный метод не нашел широкого применения вследствие длительности измерения (единичное определение толщины покрытия составляет 1—2 мин), а также частичного разрушения покрытия. Этот метод используется в лабораторных условиях для выборочного контроля или для проведения специальных исследовательских работ. Относительная погрешность определения толщины покрытия составляет 6—8%.  [c.111]

Методы хорды, микроскопический и спектральный, являются лабораторными и могут быть рекомендованы только для выборочного контроля в специальных условиях, так как при этом нарушается целостность не только покрытия, но и самого изделия.  [c.117]

Для приближенных определений химического состава сталей применяют искровой и спектральный контроль.  [c.334]

Описание спектрального контроля приведено в гл. XII.  [c.336]

В течение последних лет многие машиностроительные предприятия в нашей стране и за рубежом приступили к осуществлению приемно-сдаточного контроля машин по спектральному составу вибрации. Такой контроль применяется в автомобилестроительной, дизелестроительной, турбостроительной, электромашиностроительной и других отраслях промышленности.  [c.21]


Информационное обеспечение включает способы получения диагностической информации, ее хранение и систематизацию. В качестве диагностических критериев используются временные интервалы при определении надежности, контроле производительности, быстродействия и других аналогичных факторов эталонные модули для сравнения с фактическими или расчетными значениями при определении таких параметров, как мощность, усилия, крутящие моменты, давление, скорости, ускорения и т. д. эталонные осциллограммы,, позволяющие оценивать зависимость параметров (мощности, усилия и т. д.) от времени. Сопоставляя несколько осциллограмм, получаем динамическую циклограмму, позволяющую выявить вредные взаимодействия механизмов, нарушения заданной последовательности их работы и т. п. зависимости, определенные корреляционным и спектральным анализами например, спектральные методы рекомендуется применять при использовании виброакустических параметров в качестве диагностических.  [c.276]

Краткая характеристика некоторых физических методов контроля внутренних дефектов в металле, отливках и деталях. Спектральный анализ дает возможность быстро, точно и без разрушения образца определить наличие в металле или сплаве различных элементов и их процентное содержание. Метод основан на анализе светового спектра, полученного от электрической дуги или искры, возбуждаемой между испытываемым металлом детали и медным дисковым разрядником. По характеру светового спектра судят о наличии тех или иных элементов в металле. Для выполнения такого анализа применяются приборы, называемые стило-скопами. По сравнительной интенсивности его характерных линий 310  [c.310]

В книге проф. В. И. Постникова [11] очень точно определено место дифференциального метода как существенного дополнения к методам контроля износа в процессе стендовых и эксплуатационных испытаний машин, наиболее эффективного при сравнительных испытаниях. Методически совершенно правильна предусмотренная программой испытаний противоизносных свойств масел [11] компенсация недостатков метода применением спектрального анализа содержания железа в масле и метода искусственных баз.  [c.276]

Скрытые внутренние дефекты в сварных соединениях — трещины, поры, непровары, газовые и щлаковые включения — выявляются без разрушения конструкций ультразвуком, радиационными, магнитографическими и люминесцентным методами контроля,. спектральным анализом.  [c.216]

Как ранее уже отмечалось, наиболее полно требованиям, предъявляемым для лазерного газоанализа в среднем ИК-диапазоне спектра, отвечают перестраиваемые СОг-лазеры низкого давления, Они имеют узкие линии излучения со спектральной шириной А е<10 2 см отстоящие друг от друга на 1,5... 2 см причем центры линий известны с очень высокой точностью. Это практически снимает проблему формирования и контроля спектральных характеристик лазерного излучения. Однако из-за дискретности перестройки по линиям излучения в спектральных областях 9.. . 11 мкм С02-лазеры обеспечивают возможность уверенного зондирования лишь небольшого числа газовых компонент, а именно аммиака, этилена, озона и паров воды.  [c.173]

Шум и другие свойства фотоумножителей, существенные для оптической термометрии, были широко исследованы в работах [18—20, 22, 23, 29]. Выбор способа работы фотоумножителей методом постоянного тока [44] или методом счета фотонов в основном зависит от вкуса потребителя. Не существует никаких заметных преимуществ одного метода перед другим. В обоих случаях необходимо, чтобы фотоумножителю не мешали избыток шума, усталость или нелинейность. Метод счета фотонов имеет, однако, преимущество в том, что зависимость амплитуды сигнала от усиления меньще и ослабляется эффект утечек тока внутри фотоумножителя или около его цоколя. Кроме того, сигнал имеет цифровую форму, которая облегчает прямую связь с ручной цифровой обработкой и с контрольно-компьютерной системой. В обоих методах — на постоянном токе и методе счета фотонов — критичным является контроль температуры фотоумножителя, так как спектральная чувствительность (особенно вблизи длинноволновой границы), а также темновой ток зависят от температуры. Фотоумножители с чувствительным в красной области спектра фотокатодом 8-20, такие, как ЕМ1-9558 (щтырьковая замена для ЕМ1-9658 фотоумножителя 8-20), для понижения темнового тока должны работать при температуре примерно —25 °С. Применение чувствительного в красной области фотокатода позволяет работать с длинами волн примерно до 800 нм, хотя если прибор предназначен исключительно для воспроизведения МПТШ-68 выше точки золота, такие длины волн требуются редко.  [c.377]

Пример И. В примере 10 при расчете защиты детектора Рц от источника И6 необходимая толщина защиты оказалась равной 12=68 см бетона. В настоящем примере ставится задача определить мощность дозы в точке детектора Р 2 (помещение ПЮ), если источником И5 (помещение П9) является урановый блочок массой 1 кг, облученный в реакторе на тепловых нейтронах в течение Г=120 дней и после выдержки i=30 дней. Для упрощения расчетов удельную мощность реактора примем равной ш= квт кг (обычно она бывает больще). Расстояние от источника до детектора Ь=4 м. Цель данного примера — проиллюстрировать применение формул для расчета мощности дозы за защитой й по радиационным характеристикам (удельной активности, спектральному составу), рассчитанным только для Г = оо. При этом необходимо рассчитать уровни излучения а) выраженные в единицах мощности экспозиционной дозы Р [мр1ч], если удельная активность Q выражена в единицах кюри или грамм-эквивалентах радия М-, б) в единицах интенсивности I [Мэе/ см -сек)], если удельная активность выражена в единицах силы источника 5 [Мэе/(сек-кг)]. Для контроля результаты расчета в примерах а и б надо сравнить между собой, а также с результатами расчета с использованием непосредственных радиационных характеристик для 7 = 120 дней и = 30 дней.  [c.339]


В настоящее время на основе внешнего и внутреннего фотоэффекта строится бесчисленное множество приемников излучения, преобразующих световой сигнал в электрический и объединенных общим названием — фотоэлементы. Они находят весьма широкое применение в технике и в научных исследованиях. Самые разные объективные оптические измерения немыслимы в наше время без применения того или иного типа фотоэлементов. Современная фотометрия, спектрометрия и спектрофотометрия в широчайшей области спектра, спектральный анализ вещества, объективное измерение весьма слабых световых потоков, наблюдаемых, например, при изучении спектров комбинационного рассеяния света, в астрофизике, биологии и т. д. трудно представить себе без применения фотоэлементов регистрация инфракрасных спектров часто осуществляется специальными фотоэлементами для длинноволновой области спектра. Необычайно широко используются фотоэлементы в технике контроль и управление производственными процессами, разнообразные системы связи от передачи изображения и телевидения до оптической связи на лазерах и космической техники представляют собой далеко не полный перечень областей применения фотоэлементов для решения разнообразнейших технических вопросов в,современной промышленности и связи.  [c.649]

Радиационные методы основаны на различных эффектах, происходящих при взаимодействии ионизирующего излучения со средой (ослаблении, ионизации, отражении, изменении спектрального состава излучения и т. п.). Бесконтактность измерения, хорошая пространственная и временная разрешающие способности, простота и надежность измерения в сочетании с высокой точностью привели к широкому применению радиационных методов в исследовательской практике и промышленности для контроля и управления технологическими процессами.  [c.245]

Химическая промышленность Спектральный анализ, контроль структуры пластмасс и полимеров, колорлметрическин контроль растворов  [c.49]

Пни1евая промыш-ленность Люминесцентный контроль качества продуктов, визуальная ми кроскопия, спектральный анализ  [c.49]

Спектральный диапазон микроинтерферометров можно существенно расширить, используя преобразователи изображения. Это позволяет распро-сгранить хорошо отработанные методы контроля на материалы, непрозрачные в видимой области спектра.  [c.70]

Контролируемый объект (фотошаб-лон и т. п.) устанавливается в иммерсионной кювете для устранения влияния оптических неоднородностей материала его подложки. Если дефектов (отклонение в топологии рисунка, царапины) нет, то в плоскости наблюдательного экрана видно только контурное изображение объекта. При наличии дефектов, обычно имеющих широкий дифракционный спектр, их спектральные компоненты проходят мимо заградительной маски и формируют из ображение на экране в виде светлых пятен. Оператор ведет отбраковку в соответствии с критериями годности. Процедура контроля однотипных изделий может быть автоматизирована. Эффективно применение телевизионных систем наблюдения, Погрешность установки объекта в кювете не должна превышать 0.01 мм. Наклоны объекта не должны превышать 0,5°.  [c.97]

Основные характеристики ферромагнитных материалов — коэрцитивная сила, остаточная магнитная индукция, основная кривая намагничивания, магнитная проницаемость, площадь и форма петли, спектральный состав индукции или ее производной (э. д. с.) —служат основой различных магнитных и- электромагнитных методов структуроскопии и давно используются для сортировки, оценки твердости, контроля качества термической обработки ферромагнитных материалов. Среди этих методов наиболее важное место занимает коэрцитиметрия. Измерение коэрцитивной силы включает по меньшей мере две операции намагничивание и размагничивание образца (или детали). Имеется почти полувековой опыт применения коэрцитиметров.  [c.103]

Вместо окуляра может быть использована спектральная насадка, и тогда МИИ-15 преобразуется в микропрофилометр, т. е. его можно в этом случае использовать для контроля поверхностей с беспорядочными следами обработки.  [c.104]

Таким образом, если в процессе измерения регистрировать спектральные характерисзтики входного сигнала и знать частотные зависимости модуля и фазы входного импеданса тела человека, то с помощью дозиметрического подхода можно наиболее полно оценить опасность вибрационного воздействия на тело человека. Однако в этом случае дозиметрический подход не имел бы никаких преимуществ перед спектральными методами контроля вибрационного воздействия. Значение дозиметрического метода контроля заключается в его простоте. А она появляется после того, как мы принимаем ряд допущений. Первое допущение заключатеся в том, что значения Ki = / ( oj) принимаются независящими от формы спектра и позы, т. е. Ki = f ( oj) соответствует какой-то усредненной характеристике человека, отражающей наиболее характерную позу и спектр вибрации.  [c.12]

Введение дозы и интегральной оценки по частоте нормируемого параметра позволяет существенно упростить контроль вибрации на рабочих местах. Однако для того чтобы этот вид контроля имел право на жизнь, необходимо нормировать предельно допустимые значения интегральных параметров. С введением ГОСТ 12.1.012—78 ССБТ. Вибрация. Общие требования безопасности , а также Санитарных норм вибрации рабочих мест № 3044—84 и Санитарных норм и правил при работе с машинами и оборудованием, создающими локальную вибрацию, передающуюся на руки работающих № 3041—84 Минздрава СССР (срок введения обеих норм с 1 января 1984 г.) одночисловые методы контроля вибрации заняли полноправное место рядом со спектральными методами измерения. В табл. 1 приведены предельно допустимые значения вибрационных параметров по ГОСТ 12.1.012—78, СН 3044—84 и СН 3041 -84.  [c.13]

Второй недостаток — использование спектрального анализа. Контроль спектров на рабочих местах является трудоемкой операцией, несущей в себе избыточную информацию. Как было показано в гл. 1, методы одночисловой оценки и спектральный при введении коэффициента качества вибрационного воздействия для различных типов оборудования идентичны. Использование одночисловой оценки вибрации (скорректированного по частоте вибрационного параметра, дозы вибрации) позволяет осуществить индивидуальный контроль вибрационного воздействия у наиболее виброопасных профессий.  [c.31]

Одним из важнейших факторов повышения технической надежности, а следовательно, и экономической эффективности машин и механизмов является внедренпе методов и средств диагностирования. Бурное развитие вычислительной техники дало возможность оснастить узлы механизмов встроенными система.ми контроля их состояния, машинные агрегаты — автоматизированными системами диапюсч пки па базе микроЭВМ и микропроцессоров, с помощью которых в реальном масштабе времени можно ставить диагноз на основании спектральных характеристик и тонкой структуры внброаку-стического сигнала [1].  [c.20]

На экспериментальных петлевых установках ИЯЭ АН БССР с помощью периодически включаемой ректификационной колонки и механических фильтров удается достигнуть содержания HNO O.l—0,2% и ограничить содержание iFe, Сг, Ni, Si, А1 0,1—0,2 мг/кг. На всех работающих установках осуществляется систематический химический контроль содержания примесей в жидкой и газовой фазах теплоносителя, а в последние годы широкое развитие получила методика реакционнохроматографического определения окиси и закиси азота, азота, водородсодержащих-примесей в жидкой фазе теплоносителя. Широко используется методика определения НКОэ в N2O4 по измерению диэлектрической проницаемости теплоносителя. Разработана и внедрена методика раздельного определения компонентов сложной газовой смеси, состоящей из азота, кислорода, закиси, окиси и двуокиси азота. Разработаны и внедрены методики дисперсного, спектрального и активационного анализов микропримесей в теплоносителях.  [c.27]


Оценки основных термодинамических характеристик плазмы искрового канала температуры, коэффициентов и показателей поглощения, потерь энергии с излучением и других - основаны на измерениях спектральной плотности лучистого потока (или яркости Ья). Результаты измерений спектральной плотности яркости искрового канала в оптически прозрачных твердых диэлектриках (ЩГК, органическом стекле, полевом шпате) по методу сравнения, несмотря на тщательный контроль за сохранением условий эксперимента (параметров разрядной цепи, длины межэлектродного промежутка, параметров оптической системы, геометрии образца и т.д.), подвержены значительным статистическим флуктуациям. Природа этих разбросов обусловлена малыми радиальными размерами искрового канала, особенно в начальной стадии его расширения, искривлениями и нестабильностью положения канала относительно оси электродов, вариациями кинетики трещин вокруг канала и т.п. Изучение влияния типа ЩГК, режимов энерговклада и других факторов возможно только с применением статистических методов, в частности, дисперсионного анализа. Результаты проверки закона распределения отдельных измерений максимального значения спектральной плотности  [c.45]

Ослабитель состоит из стеклянной или кварцевой пластинки. покрытой слоями платины с последовательно возрастающей плотностью, прозрачность а которых заранее известна и составляет градуировку ослабителя. Обычноосла-битель имеет семь напылённых слоёв. различной плотности (ступеней) и два крайних слоя неослабленных. Последние служат для контроля освещения щели. Вид спектральных линий изображён на фиг. 17. Линии состоят из отдельных участков (ступеней) уменьшающейся ности.  [c.120]


Смотреть страницы где упоминается термин Контроль спектральный : [c.112]    [c.101]    [c.6]    [c.423]    [c.93]    [c.145]    [c.84]    [c.317]    [c.48]    [c.56]    [c.145]   
Машиностроение энциклопедия ТомII-2 Стали чугуны РазделII Материалы в машиностроении (2001) -- [ c.719 ]



ПОИСК



Спектральные приборы контроля



© 2025 Mash-xxl.info Реклама на сайте