Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Соединения сварные — Влияние механической обработки на прочность

Соединения сварные — Влияние механической обработки на прочность 112  [c.373]

При применении в связи с эксплуатационной необходимостью металлов с пониженной свариваемостью проектировать конструкции следует с учетом этого свойства. Для сведения к минимуму неблагоприятных изменений свойств металла сварного соединения и исключения в нем дефектов необходимо применять виды и режимы сварки, оказывающие минимальное термическое и другие воздействия на металл, и проводить технологические мероприятия (подогрев, искусственное охлаждение и др.), снижающие влияние на него сварочных воздействий. Термическая обработка после сварки (нормализация, закалка с отпуском и др.) может в значительной степени устранять неоднородность свойств в сварных заготовках. Прочность зоны сварного соединения может быть повышена механической обработкой после сварки прокаткой, проковкой и др.  [c.288]


Уже отмечалось, что при плазменной резке меди в литом слое на кромке (особенно в нижней ее части) в зависимости от условий резки могут образовываться шлаковые включения, рыхлоты, химические соединения в виде закиси меди. Указанные включения и образования, попадая в сварной шов, снижают пластичность и прочность металла. При изготовлении ответственных конструкций из меди кромки деталей под сварку необходимо обрабатывать механическим способом на глубину до 1,5 мм. Это тот слой, который содержит кислородную эвтектику. Зона укрупненного зерна, полученная от плазменной резки, не оказывает существенного влияния на качество сварного шва. При определенных условиях плазменной резки, обеспечивающих минимальную глубину литого слоя (высокие скорости резки, напряжение на дуге и другие), можно получить кромки резов, свободные от указанных выше дефектов. В этих случаях механическая обработка кромок перед сваркой не требуется.  [c.97]

Из производственной практики известно, что подготовка кромок листов из нержавеющих сталей в основном осуществляется механической резкой на станках и кислородно-флюсовой резкой. При этих способах не исключена возможность появления дефектов на подготовленных кромках, снижающих механическую прочность материала. При механической резке грубый рез может быть получен из-за вибрации резца. При кислородно-флюсовой резке имеет место изменение структуры металла кромки, а поверхностный слой металла у кромки реза, как было ранее установлено, обедняется легирующими элементами. Такие дефекты не имеют существенного значения, если кромка, полученная при резке нержавеющей стабилизированной хромоникелевой стали, предназначена под сварку. В этом случае предполагается, что во время сварки металл, примыкающий к поверхности реза, будет расплавлен, и, образованная резкой, зона термического влияния практически не повлияет на механические и коррозийные свойства сварного соединения. В случае обработки нестабилизированной стали, как показал опыт ряда заводов, резку следует сопровождать интенсивным охлаждением кромки водой, так как в этом случае уменьшается время нахождения металла при критической температуре, чем предотвращается выпадение карбидов хрома или, по крайней мере, уменьшается опасность образования межкристаллитной коррозии. Однако в обоих случаях для удаления слоя металла, обедненного легирующими элементами, кромка после резки должна быть зачищена абразивным кругом.  [c.51]


В ядре сварной точки допускаются единичные поры, раковины и даже трещины, если их размер не превышает V3—V4 высоты ядра. Такого рода дефекты не оказывают влияния не только на статическую, но и вибрационную прочность. Это объясняется тем, что прочность сварной точки главным образом зависит от концентрации напряжений, типовая эпюра которых показана на нижней части рис. 96. Круговой концентратор К, который проходит по зоне термического влияния (если она есть) или по границе расплавления, и представляет собой самое опасное сечение сварного соединения. Следовательно, поскольку неустраним сам концентратор К, то, видимо, все внимание технолога должно сосредоточиваться на том слое металла, в котором расположен концентратор К-Таким образом, первая задача технолога —это получить хорошо сформированное расплавленное ядро определенных размеров. Вторая, более сложная задача — обеспечить в зоне концентратора К такую структуру металла, которая в наибольшей мере оказалась бы способной выдерживать концентрации напряжений без образования надрывов и трещин. Если иметь в виду, что при точечной сварке металл в зоне сварного соединения подвергается одновременно тепловому и механическому воздействию, то вполне рационально рассматривать точечную сварку как термомеханический процесс обработки металла. Но и это еще не все, что отличает точечную сварку от классической схемы термической обработки только в координатах температура — время. Через жидкую фазу ядра и горячую зону термического влияния проходят токи огромной плотности. Во многих случаях практики эти токи униполярны. Нельзя поэтому упускать из вида возможность влияния электрического тока — вначале на химическую однородность металла, а затем в конечном итоге и на структуру не только ядра, но и границы плавления.  [c.196]

Качество сварных соединений проверяли механическими испытаниями на растяжение, сдвиг и кручение. Оптимальным режимом сварки образцов оказался следующий Т = = 1273 К, Р = 19,6 МПа, t = 5 мин, Рв = 6,5 10- Па. Образцы, сваренные по этому режиму, разрушались по стали 45. Однако общая деформация сваренных по этому режиму образцов составляла 5—5,5%, что недопустимо для готовых изделий (пуансонов и модулей пневмоники). С целью возможности уменьшения степени деформации было исследовано влияние подготовки поверхности перед сваркой на прочность сварного соединения сталей Р18 и 45 (рис. 8). Повышение качества обработки поверхности до 0,16 мкм позво-  [c.134]

В книге изложены основы механохимии твердого тела применительно к проблеме защиты деформированных металлов от коррозии. На основе термодинамического и кинетического анализа механохимических явлений на границе фаз твердое тело — жидкость и экспериментальных исследований рассмотрена модель механохимического эффекта (ускорения растворения металла при деформации) и описано явление, названное хемомеханическим эффектом. Установлены закономерности влияния напряженного состояния и тонкой структуры металла на коррозионную стойкость и образование коррозионных элементов на поверхности неоднородно деформированных участков металла и сварных соединений. Рассмотрены некоторые методы защиты металлов, вопросы коррозионно-механической прочности труб, способы механохимической обработки поверхности металла.  [c.2]

При кислородно-флюсовой резке не исключена возможность появления дефектов, снижающих механическую прочность материала. При кислородно-флюсовой резке изменяется структура металла кромки, а поверхностный слой металла у кромки реза обедняется легирующими элементами. Такие дефекты не имеют существенного значения, если кромка, полученная при резке нержавеющей стабилизированной хромоникелевой стали, предназначена для сварки. В этом случае предполагается, что во время сварки металл, примыкающий к поверхности реза, будет расплавлен, и образованная резкой зона термического влияния практически не повлияет на механические и коррозионные свойства сварного соединения. В случае обработки не-стабилизированной стали, как показал опыт ряда заводов, резку следует сопровождать интенсивным охлаждением кромки водой (расход воды при этом должен составлять около  [c.65]


С. меди и ее сплавов. Металлургич. медь обладает хорошими сварными качествами, но нек-рые примеси, напр, свинец, висмут, цинк, никель и олово, затрудняют выполнение С. В электролитич. меди отсутствуют присадки, предохраняющие от окисления, вследствие чего ее при С. можно легко пережечь. Кислород жадно поглощается медью при 1°пл. с образованием закиси меди, что может привести к красноломкости. Расплавленной медью механически поглощаются восстановительные газы, как водород, двуокись серы и окись углерода, к-рые остаются включенными в форме пузырей и значительно ослабляют прочность соединения. В связи с этим при газовой С. для избежания вредного влияния кислорода и поглощения газов требуется особенно тщательная установка пламени. Повышение крепости возможно для меди лишь путем соответствующей холодной обработки, а не путем изменения скорости ее охлаждения. Следует учитывать высокий размер усадки меди в 1,4%. Медь можно сваривать также на горновом огне или методом сопротивления. Затруднительно в данном случае избежать поглощения медью кислорода. При кузнечной С. в качестве присадки применяют буру для предохранения свариваемых частей от атмосферного воздуха. Чаще всего применяется газовая С. при помощи ацетиленокислородного пламени. Сварочному шву обычно придают У-образную или Х-образную форму со скосом кромок под углом друг к другу в 60° с зазором между ними ок. 5 мм. Кромки листов толщиной меньше 3 мм не скашиваются. В связи с сильным отводом тепла пламя приходится устанавливать почти вдвое более мощным, чем при С. стали. Часто для подогрева пользуются еще и второй горелкой. Вертикальные швы, как и листы толщиной > 5 мм, предпо-  [c.107]

Алюминиевые сплавы обычно используют в виде деформированных и термообработанных полуфабрикатов, прочность которых выше прочности полученного при их сварке литого металла шва или отожженного основного металла в зоне термического влияния. Минимальная прочность этих участков определяет прочность всего сварного соединения. Таким образом, чем выше прочность сварных соединений, тем эффективнее используется в конструкции исходное упрочненное состояние алюминиевых полуфабрикатов. Для увеличения прочности соединений алюминиевые сплавы сваривают на режимах с малой погонной энергией, а после сварки соединения упрочняют механической, взрывной или термической обработкой. Достигнутый при этом уровень прочности сварных соединений остается ниже максимальной прочности, которую можно получить при обработке исходного металла. Кроме того, значительное механическое упрочнение литого металла шва и зоны сплавления часто ограничено их низкой пластичностью, а полный цикл термообработки не всегда возможен из-за значительных размеров сваренного изделия или его чрезмерной деформации при закалке.  [c.23]

Влияние термоциклической обработки на однородность механических свойств и стойкость против разрушения в наводороживакзщей среде сварного соединения низкоуглеродистой стали повышенной прочности/Т. В. Корж, И. П. Леушнн, В. Л. Мирочник и др.//Повышение надежности и долговечности деталей машин методами терм, и химнко-терм. обраб. Волгоград, 1983. С. 24—26.  [c.243]

Рис. 35. Влияние механической обработки поверхности (а) и химической обработки и очистки поверхности (б) на прочность сварного соединения конструкционной стали 45. Режим сварки Т = 1000° С t = 5 мин В = 10 мм рт. ст., р = = 19,6 Мн1м (2 кгс1мм ) Рис. 35. <a href="/info/444777">Влияние механической обработки</a> поверхности (а) и <a href="/info/81280">химической обработки</a> и <a href="/info/183684">очистки поверхности</a> (б) на <a href="/info/120334">прочность сварного соединения</a> <a href="/info/51124">конструкционной стали</a> 45. Режим сварки Т = 1000° С t = 5 мин В = 10 мм рт. ст., р = = 19,6 Мн1м (2 кгс1мм )
Как известно, шероховатость или чистота поверхности при механической обработке определяется в первую очередь прочностными свойствами обрабатываемого материала. При сварке плавлением воздействие термического цикла сварки вызывает в металле структурно-химические изменения, обус-ловливаюшие неоднородность прочностных свойств сварного соединения. Так, сварные соединения, выполненные из закаленных низколегированных сталей, характеризуются двумя основными участками неоднородности в зоне термического влияния (1 — разупрочненный участок, обусловленный сварочным нагревом стали до температуры Ас 2 - участок полной перекристаллизации, нагревающийся выше температуры конца фазового а—у превращения вплоть до температуры плавления). Регламентируемый уровень прочности сварных соединений из стали 09Г2С соответствует разупрочнению участка 1 на 11—13 % и упрочнению участка 2 на 8—10 %. Для стали 16ГМЮЧ соответственно 15—17 % и 10—13 %. В отдельных случаях относительное разупрочнение свариваемых сталей может превышать 40%.  [c.91]

Технологию сварки для этих сталей выбирают из условий соблюдения комплекса требований, обеспечивающих прежде всего равнопрочность сварного соединения с основным металлом и отсутствие дефектов в сварном соединении. Сварное соединение должно быть стойким против перехода в хрупкое состояние, а деформация конструкции должна быть в пределах, не отражающихся на ее работоспособности Металл шва при сварке низкоуглеродистой стали незпачительно отличается по своему составу от основного металла — снижается содержание углерода и повышается содержание марганца и кремния. Однако обеспечение равнопрочности при дуговой сварке не вызывает затруднений. Это достигается за счет увеличения скорости охлаждения и легирования марганцем и кремнием через сварочные материалы. Влияние скорости охлаждения в значительной степени проявляется при сварке однослойных швов, а также в последних слоях многослойного шва. Механические свойства металла околошовной зоны подвергаются некоторым изменениям по сравнению со свойствами основного металла — при всех видах дуговой сварки это незначительное упрочнение металла в зоне перегрева. При сварке стареющих (например, кипящих и полуспокойных) низкоуглеродистых сталей на участке рекристаллизации околошовной зоны возможно снижение ударной вязкости металла. Металл околошовной зоны охрупчивается более интенсивно при многослойной сварке по сравнению с однослойной. Сварные конструкции из низкоуглеродистой стали иногда подвергают термической обработке. Однако у конструкций с угловыми однослойными швами и многослойными, наложенными с перерывом, все виды термической обработки, кроме закалки, приводят к снижению прочности и повышению пластичности металла шва. Швы, выполненные всеми видами и способами сварки плавлением, имеют вполне удовлетворительную стойкость против образования кристаллизационных трещин из-за низкого содержания углерода. Однако при сварке стали с верхним пределом содержания углерода могут появиться кристаллизационные трещины, прежде всего в угловых швах, первом слое многослойных стыковых швов, односторонних швах с полным проваром кромок и первом слое стыкового шва, сваренного с обязательным зазором.  [c.102]


Механические свойства высокохромистых мартенситных сталей и их сварных соединений определяются фактическим химическим составом и режимом термической обработки, с помощью которой можно регулировать как свойства самой мартенситной матрицы, так и конечный фазовый состав и структуру сталей Существенное влияние на механические свойства оказывают также количество, величина и геометрическая форма -феррита, в общем случае способствующего снижению пластичности и ударной вязкости без существеииого влияния на пределы прочности и текучести (табл 13.3).  [c.238]

Форма ядра сварной точки, его расположение относительно площади контакта и его размеры —это главные факторы, определяющие прочность единичной сварной точки. Вообщето трудно себе представить более несовершенную прочностную модель, чем единичная сварная точка. Выше уже отмечалось, что вокруг ядра получается резкая концентрация механических напряжений. Картина таких напряжений изображена на рис. 4.5. Никакие ухищрения посредством термомеханической обработки не могут изменить геометрию конструкции соединения с ее концентраторами в точке К- Это значит, что резкость концентрации обязательно сохраняется для любых точечно-сварных соединений из любых металлов. Действие концентрированных напряжений может быть несколько смягчено созданием пластического металла по кольцу концентрации или, наоборот, усилено сохранением послесвароч-ной закаленной структуры. На рис. 4.5 даны типовые графики ядра и зоны термического влияния вокруг него. Сохранение одинаковой твердости ядра и зоны термического влияния (примерно по кривой 1—1—1) свойственно коррозионно-стойким аустенит-ным хромоникелевым сталям. Твердость по кривой 2—2—2 характерна для незакаливающихся металлов и сплавов, упрочненных холодной деформацией. В этом случае в зоне термического влияния происходит операция отжига, которая завершается снижением показателей твердости. Кривые I—3—/ или 1—2—/  [c.166]

Свойства сварных соединений зависят от металла шва и свойств различных зон термического влияния. Для подавляющего большинства сталей удается получить такой химический состав металла шва и его структуру, которые обеспечивают прочность и пластичность металла шва не ниже, а во многих случаях и выше тех же характеристик основного металла. Как правило, этого удается достигнуть непосредственно после сварки, а в некоторых случаях — после термической обработки сварной конструкции. Свойства околошовной зоны в основном зависят от реакции основного металла на термический цикл сварки на них крайне мало влияет состав металла шва. В большинстве случаев, в особенности для сложнолегированных сталей, чувствительных к термическому циклу сварки, задача обеспечения необходимых механических свойств сварных соединений сводится к достижению необходимых свойств металла в зо-  [c.99]

В определенной мере технологический характер имеет требование равнопрочности сварного соединения основному металлу. Оно ркяючает в себя не только требование не уступать основному металлу по прочности. В широком смысле этого понятия речь идет о полной равноценности сварного соединения и основного металла. Требование равно-прочносга может служить своеобразной целью или эталоном качества технологического процесса, даже если в этом нет особой необходимости, являться стимулом к разработке новых методов сварки, сварочных материалов, технологий и сварочного оборудования. Под влиянием этого требования проводятся различные мероприятия, направленные на устранение недостатков, свойственных сварочному процессу, например применение термической обработки для снижения остаточных нахфяжений или устранения механической неоднородности.  [c.10]


Смотреть страницы где упоминается термин Соединения сварные — Влияние механической обработки на прочность : [c.154]    [c.101]    [c.352]   
Проектирование сварных конструкций в машиностроении (1975) -- [ c.112 ]



ПОИСК



Влияние Механическая обработка

Влияние Соединения

Влияние обработки

Механические Влияние механической обработки

Обработка механическая

Прочность сварных соединений

Прочность соединений

Прочность усталостная сварных соединений Влияние стыковых 114—117 — Механическая обработка шва 116 — Напряжения в стыковом соединении 115 Остаточные напряжения от сварки

Сварные Прочность

Сварные соединения — Механические

Соединения механические

Соединения сварные — Влияние механической обработки на прочность концентрации напряжения



© 2025 Mash-xxl.info Реклама на сайте