Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Домен ферромагнитный

Осаждение магнитного порошка. Метод основан на притягивании частиц ферромагнитного порошка (в виде коллоида) к полям рассеяния, создаваемым доменами ферромагнитной фазы сплава. Таким образом, оказывается возможным разделять участки ферромагнитной и пара- или диамагнитной фаз. Это особенно важно в тех случаях, когда химические свойства указанных фаз из-за близкого (или равного) химического состава практически одинаковы и обычные методы травления неэффективны. Важная область использования магнитного метода — исследование структуры аустенитных сплавов, где возможно выделение ферритной фазы, а также изучение структуры закаленной и отпущенной стали, когда наряду с а-твердым раствором может быть и аусте-нит. При небольших количествах ферромагнитной фазы этот метод более чувствителен, чем измерение намагниченности насыщения.  [c.147]


Рис. 4.13. Ориентация доменов в ферромагнитном материале а) - деталь размагничена б) - деталь намагничена до индукции насыщения в) - деталь намагничена до остаточной намагниченности Рис. 4.13. Ориентация доменов в ферромагнитном материале а) - деталь размагничена б) - деталь намагничена до <a href="/info/116770">индукции насыщения</a> в) - деталь намагничена до остаточной намагниченности
Намагничение ферромагнитного образца, имеющего нулевой результирующий магнитный момент при Н = 0, происходит за счет изменения формы и ориентации доменов (рис. 10.18). В слабых полях наблюдается увеличение объема выгодно расположенных относительно внешнего поля доменов, за счет доменов с невыгодной ориентацией, т. е. имеет место процесс смещения границ доменов. Процесс намагничения в слабых полях обратим. Если внешнее поле снять, то домены восстановят исходную форму и размеры. Увеличение поля приводит к тому, что рост выгодно ориентированных доменов осуществляется тоже за счет необратимых процессов. Обратимому смещению границ доменов могут, например, препятствовать дефекты кристаллической структуры. Чтобы преодолеть их действие, граница домена должна получить от внешнего поля достаточно большую энергию. Если снять намагничивающее поле, то дефекты помешают границам доменов вернуться в исходное положение. Процессы необратимого смещения границ доменов обусловливают эффект Баркгаузена, заключающийся в том, что  [c.344]

Доменная структура тонких ферромагнитных пленок весьма специфична. Характер доменов и границ между ними существенно зависит от толщины пленки. При малой толщине из-за того, что размагничивающий фактор в плоскости пленки на много порядков меньше, чем в направлении нормали к ней, намагниченность располагается параллельно плоскости пленки. В этом случае образования доменов с противоположными направлениями намагничивания по толщине пленки не происходит. Доменная структура в этом случае может быть подобна изображенной на рис. 10.23. В плен-  [c.349]

Контролируемая ферромагнитная деталь состоит из очень малых самопроизвольно намагниченных (за счет вра щения электронов вокруг собственных осей) областей — доменов. В размагниченной детали поля доменов направлены самым различным образом и компенсируют друг друга. Суммарное магнитное поле при этом равно нулю. При помещении детали во внешнее намагничивающее поле домены устанавливаются в его направлении и образуют результирующее поле, а деталь намагничивается. При этом магнитные линии имеют определенную направленность. Для намагничивания деталей используют магнитное поле, возникающее в пространстве вокруг проводника с током, между полюсами постоянного магнита (электромагнита) или соленоида, в обмотках которого протекает электрический ток. Магнитное поле характеризуется магнитной индукцией (В),  [c.190]


Элементы Рец, Ni, Со, Gd, имеющие - >1,5 — ферромагнитны элементы Fe , Мп, Сг, у которых < 1,5 — парамагнитны. Ферромагнитные тела имеют доменную  [c.62]

Под действием обменных сил параллельная ориентация магнитных моментов атомов ферромагнитного вещества происходит в определенных областях, называемых доменами. В пределах домена материал в отсутствие внешнего поля намагничен до насыщения благодаря обменному взаимодействию отдельных атомов. Это взаимодействие действует только до определенной критической температуры, которая называется температурой Кюри. Выше температуры Кюри домены разрушаются и ферромагнетик переходит в парамагнитное состояние. Ферромагнитные вещества легко намагничиваются в слабых магнитных полях. Магнитная проницаемость и  [c.86]

В ферромагнитных материалах реализуется такая доменная структура, для которой полная свободная энергия системы является минимальной.  [c.87]

При наложении внешнего магнитного поля происходит рост объема доменов, которые имеют направление намагниченности, совпадающее или близкое к направлению напряженности поля. Зависимость магнитной индукции ферромагнитного вещества от напряженности внешнего поля называют кривой намагничивания, она имеет вид, показанный на рис. 3.4. Кривую намагничивания ферромагнетиков можно разделить на несколько участков, которые характеризуются определенными процессами намагничивания. В области слабых полей (область /) магнитные восприимчивость и проницаемость не изменяются. Изменение магнитной индукции в этой области происходит в основном за счет обратимых процессов, которые обусловлены смещением границ доменов.  [c.88]

Величину зерна в ферромагнитных материалах можно также определять, используя акустическое проявление эффекта Баркгаузена. При этом к контролируемому участку изделия прикладывают источник медленно изме- няющегося магнитного поля. Изменение в материале сопровождается вращением доменных стенок, что вызывает генерацию импульсов УЗК- Число импульсов соответствует числу пересечений доменной стенкой границ зерен, т. е. числу зерен.  [c.282]

Для ферромагнитных сталей получено, что коэрцитивная сила достигает максимума при температуре отпуска 500-600 °С, а при температуре более 600 °С падает, и объясняется это смещением доменных границ в структуре металла. При уменьшении содержания углерода в стали коэрцитивная сила также падает.  [c.65]

Проанализируем причины данных различий, основываясь на результатах исследования методом Лоренца [384] доменной структуры наноструктурного Со, полученного ИПД кручением и имеющего размер зерен 0,1 мкм, и крупнокристаллического Со с размером зерен 10 мкм [385]. Известно, что основными факторами, определяющими доменную структуру ферромагнитных материалов, являются константа анизотропии, обменная энергия и магнитостатическая энергия [267]. Роль константы анизотропии в формировании доменной структуры, как это делается традиционно, изучали путем исследования температурной зависимости.  [c.223]

В начальный инкубационный период развития тре-ш,ины плотность дислокаций растет и внутренние напряжения увеличиваются. При этом в ферромагнитных материалах движение доменных частиц затрудняется. По мере увеличения нагрузки появляются линии скольжения, имеющие тенденцию к расширению. Отдельные части зерна темнеют. Возникает множество линий, сдвигов, переходящих затем в трещины.  [c.160]

Таким образом, деление ферромагнитного кристалла на домены является следствием стремления системы уменьшить свою свободную энергию. Однако это деление не может происходить беспредельно, так как появление границы между доменами, у которых угол 0 между спинами возрастает до 180° (рис. 11.11, а), должно неизбежно привести к увеличению обменной энергии (см. (11.32)). Деление протекает до тех пор, пока уменьшение магнитной энергии, вызванное делением, не компенсируется увеличением обменной энергии границ раздела между доменами. Дальнейшее деление энергетически невыгодно, и этим определяется нижний предел размера доменов. Как показывают расчет и эксперимент, для желе а поперечный размер доменов 0,1 мкм, что меньше обычных размеров зерен поликристаллического железа.  [c.296]


При воздействии внешнего поля магнитные моменты доменов приобретают преимущественное ориентирование в направлении этого поля, и ферромагнитное вещество намагничивается.  [c.7]

Л.— Л. у. отражает факт сохранения макроскопич. намагниченности при динамич. процессах в ФМ, ферромагнетизм к-рых обусловлен обменным взаимодействием, Л,— Л. у. нрименяется, напр., при теоретич. рассмотрении доменной стенки динамики и ферромагнитного резонанса.  [c.574]

В образцах с размером ниже определенного критического размера существование доменов и доменных границ становится энергетически невыгодным и достаточно малые ферромагнитные образцы становятся однодоменными [1-11]. Оценка критического размера одно-доменности ферромагнитной частицы в отсутствие поля проводится обычно на основе сравнения энергии частицы в однодоменном состоянии и энергии частицы с одной доменной границей, т. е. в двухдоменном состоянии. Если частица имеет форму шара с радиусом то ее магнитная энергия (в однодоменном состоянии — это магнитостатическая энергия) равна  [c.31]

Обсудим теперь вопрос почему образуются ферромагнитные домены Ответ на этот вопрос дали Ландау и Лифшиц. Они но казали, чта образование доменной структуры является следствием существование в ферромагнитном образце конкурирующих вкладов в полную энергию тела. Полная энергия Е ферромагнетика складывается из 1) обменной энергии Еовм, 2) энергии кристаллографической магнитной анизотропии Ек- 3) энергии магнитострик-ционной деформации Ех 4) магнитоупругой энергии Ес 5) магнитостатической энергии Ео] 6) магнитной энергии Таким образом,  [c.346]

Типичный представитель ферромагнитного вещества — это железо. Установлено, что каждый кристалл железа как бы разделен на области (домены), содержащие по 10 — 10 атомов, магнитные моменты которых отвечают первому типу ориентации. Внутреннее магнитное поле домена имеет высокую напряженность-г-ОКОЛО 10 —10 А/м. Но пространственная ориентировка магнитных полей доменов хаотична, поэтому результирующая намагниченность всего кристалла (совокупности доменов) равна нулю. При включении внещ-него магнитного поля домены ориентируются вдоль поля, вследствие чего иамагниченность возрастает. Чем больше напряженность поля, тем большее число доменов приобретает упорядоченную ориентацию и тем выше намагниченность образца.  [c.151]

Амплитуда и форма резонансной кривой поглощения определяются процессами релаксации. Наличие их приводит к тому, что компоненты тензора магнитной проницаемости становятся комплексными величинами. При отсутствии внешнего магнитного поля магнитная проницаемость скалярна. Ширина резонансной кривой ферромагнитного резонанса АН обычно определяется как разность полей, при которых мнимая часть диагональной компоненты тензора проницаемости ц" составляет половину своего значения м-"рез в точке резонанса. Зависимость ее вещественной ц и мнимой ц" частей от частоты называют магнитными спектрами. Для магнитных спектров ферритов характерно наличие двух областей дисперсии. Низкочастотная область дисперсии обусловлена смещением границ доменов, а более высокочастотная — естественг.ым ферромагнитным резонансом в эффективных полях анизотропии и размагничивающих полях.  [c.708]

Существование доменов можно проверить экспериментально. Если соединить телефон через усилитель с катушкой, охватывающей феррит, и медленно его перемагничивать, можно различать отдельные щелчки, связанные со скачкообразным изменением индукции. На полированной поверхности намагниченного образца феррита можно обнаружить узоры, образующиеся при осаждении тончайшего ферромагнитного порошка на границах отдельных доменов.  [c.25]

При температуре выше определенного значения, называемого точкой Кюри, происходит разрушение доменной структуры и магнитные материалы теряют свои ферромагнитные свойства. Для разных материалов точка Кюри имеет раЗНЫб значения, являясь параметром магнитнго материала.  [c.292]

Магнитные свойства и строение вещества. Как известно электрон обладает спиновым и орбитальным магнитными моментами. Геометрически складываясь моменты электронов создают результирующий магнитный момент атома М. Суммарный магнитный момент в единице объема, именуемый намагниченностью J, когда вещество не было намагничено и внешнее поле отсутствует, равняется нулю. Под воздействием магнитного иоля со средней напряженностью внутри тела, равной Н, намагниченность J = %Н, где х— магнитная восприимчивость. Намагниченность определяет величину магнитной индукции В = В + + %Н. Магнитные свойства вещества характеризует также относительная магнитная проницаемость х = 1 -10 гн м — магнитная постоянная вакуума. В зависимости от величины и знака магнитной восприимчивости вещества могут быть диамагнитные (Х<0), парамагнитные и ферромагнитные (х>>0). Рассмотрим две последние группы веществ. В парамагнитных веществах у атомов имеются магнитные моменты, однако иод влиянием теплового движения эти моменты располагаются статистически беспорядочно вдоль магнитного поля удается ориентировать лишь примерно одну десятитысячную процента всех спинов. В результате магнитная восприимчивость X мало отличается от нуля, а магнитная проницаемость парамагнитных материалов немногим больше единицы. К парамагнитным принадлежат некоторые переходные металлы, а также щелочные и щелочно-земельные металлы. Ферромагнитные материалы обладают весьма большой магнитной восприимчивостью, может достигать значений порядка 10 , после снятия поля сохраняется остаточная намагниченность. Ферромагнитные свойства при нагревании наблюдаются лишь до некоторой температуры 0, отвечающей точке Кюри — переходу нз ферромагнитного в парамагнитное состояние. Значение 0 для железа 769° С, для кобальта 1120° С, для никеля 358 С. При температурах Т G в отсутствие внешнего поля ферромагнетик состоит из микроскопических областей — доменов, самопроиз-  [c.226]


Ферромагнитные материалы с широкой петлей гистерезиса ( 17.1), именуемые магнитнотвердыми, обладают весьма большой коэрцитивной силой, что связано с их структурными особенностями. При рассмотрении условий намагничивания отмечалось, что ряд факторов — наличие внутренних напряжений, искажений решетки и включений препятствует смещению границ между доменами, что сказывается в появлении высокой коэрцитивной силы. Однако исключительно высокие значения Яс, получаемые для некоторых сплавов, уже нельзя объяснить влиянием указанных факторов. Для сплавов с коэрцитивной силой свыше 40 ООО ajM допускают возможность образования в процессе охлаждения изолированных намагниченных частиц — доменов, расположенных среди слабомагнитной фазы процессы смещения в таких материалах затруднены и их перемагничи-вание возможно только с помощью процесса вращения. Исследования показывают, что достаточно небольшого количества изолированных намагниченных частиц, чтобы материал имел весьма высокую коэрцитивную силу. В некоторых сплавах этого типа охлаждение ведется в магнитном поле, магнитные моменты в изолированных доменах оказываются ориентированными по направлениям, близким к направлению магнитного поля. Получены сплавы не только с магнитной, но и с кристаллической текстурой.  [c.261]

Магнитные свойства материалов обусловлены внутренними скрытыми формами движения электрических зарядов, представляющими собой элементарные круговые токи. Такими круговыми токами являются вращение электронов вокруг собственных осей — электронные спины и орбитальное вращение электронов в атомах. Явление ферромагнетизма связано с образованием внутри некоторых материалов ниже определенной температуры (точки Кюри) таких кристаллических структур, при которых в пределах макроскопических областей, называемых магнитными доменами, электронные спины оказываются ориентированными параллельно друг другу и одинаково направленными. Таким образом, характерным для ферромагнитного состояния вещества является наличие в нем самопроизвольной (спонтанной) на.магниченности без приложения внешнего магнитного поля. Однако, хотя в ферромагнетике и образуются самопроизвольно намагниченные области, но направления магнитных моментов отдельных доменов получаются самыми различными, как это вытекает из закона о минимуме свободной энергии системы. Магнитный поток такого тела во внешнем пространстве будет равен нулю. Возможные размеры доменов для некоторых материалов составляют около 0,001—10 мм при толщине пограничных слоев между ними в несколько десятков — сотен атомных расстояний. У особо чистых материалов размеры доменов могут быть и больше. Существование доменов удалось показать экспериментально. При очень медленном перемагничивании ферромагнитного образца в телефоне, соединенном через усилитель с катушкой, охватывающей образец, можно различать отдельные щелчки, связанные непосредственно со скачкообразными изменениями индукции. На полированной поверхности намагничиваемого образца ферромагнетика можно обнаружить появление тип1 чных узоров, образующихся с помощью осаждения тончайшего ферромагнитного порошка на границах от-  [c.267]

Процесс намагничивания ферромагнитного материала под влиянием внешнего магнитного поля сводится 1) к росту тех доменов, магнитные моменты которых составляют наименьший угол с направлением поля, и к уменьшению размеров других доменов (процесс смещения границ дохменов) 2) к повороту магнитных моментов в направлении внешнего поля (процесс ориентации). Магнитное насыщение достигается тогда, когда рост доменов прекратится и магнитные моменты всех спонтанно намагниченных микрокристаллических участков окажутся ориентированными в направлении поля. Схема ориентации спинов в доменах приведена на рис. 9-3.  [c.268]

Можно ожидать, что уменьшение зерен до размеров, близких к размерам доменов, приведет к изменению магнитных гистере-зисных свойств [383]. В результате коэрцитивная сила Не ферромагнитных материалов должна была бы возрасти в 100 и более раз.  [c.223]

Контролируемая ферромагнитная деталь состоит из очень малых (порядка 10 —10 мм) самопроизвольно намагниченных областей — домёнов. В размагниченной детали магнитные поля доменов направлены самым различным образом, компенсируя друг друга (суммарное магнитное поле равно нулю).. Если на деталь действует внешнее поле, поля отдельных доменов устанавливаются по направлению внешнего и накладываются на него, деталь намагничивается.  [c.30]

В размагниченных ферромагнитных материалах домены ориентированы случайным образом и их -магнитные поля нейт рализуют друг друга. Воздействие магнитного поля приводит к ориентации доменов в направлении Приложенного поля и их магнитные моменты складываются.  [c.10]

Спиновая природа ферромагнетизма. Для объяснения ферромагнитных свойств твердых тел русский физик Розинг и французский физик Вейсс высказали предположение, что в ферромагнетиках существует внутреннее молекулярное поле, под действием которого они даже в отсутствие внешнего поля намагничиваются до насыщения. Внешне такая с/гонтанная намагниченность не проявляется потому, что тело разбивается на отдельные микроскопические области, в каждой из которых магнитные моменты атомов расположены параллельно друг другу, а сами же области ориентированы друг относительно друга хаотично, вследствие чего результирующий магнитный момент ферромагнетика в целом оказывается равным нулю. Такие области спонтанной намагниченности получили название доменов. В настоящее время существует ряд экспериментальных методов прямого наблюдения доменов и определения направления их намагниченности.  [c.293]

Доменная структура ферромагнитных тел. Как уже указывалось, ферромагнетик в ненамагниченном состоянии самопроизвольно (спонтанно) разбивается на домены, намагниченные до насыщения вследствие параллельной ориентации в них спиновых магнитных моментов, происходящей под действием обменных сил. Выясним причину деления ферромагнетика на домены.  [c.295]

В ферромагнетиках, в отличие от парамагнитных тел, между неспаренными электронами внутренних недостроенных оболочек имеет место сильное обменное взаимодействие, вызывающее упорядоченное расположение их СПИновых магнитных моментов и спонтанное намагничивание доменов до насыщения Это приводит к существенным особенностям в протекании резонансного поглощения высокочастотной энергии ферромагнетиками, которое называют ферромагнитным резонансом. Физическая суть его состоит е том, что под действием внешнего магнитного поля Нд, намагничивающего ферромагнетик до насыщения, полный магнитный момент образца М начинает прецессировать вокруг этого поля с ларморовой частотой ojl, зависящей от Яо (11.25). Если на такой образец наложить высокочастотное электромагнитное поле, перпендикулярное Яо, и изменять его частоту ш, то при ю = i. наступает резкое (резонансное) усиление поглощения энергии поля. Резонанс наблюдается на частотах порядка 20-Г-30 ГГц в полях 4- 10 -А/м (л 5000 Э). Поглощение при этом на несколько порядкоз выше, чем при парамагнитном резонансе, так как магнитная восприимчивость ферромагнетиков (а следовательно, и магнитный момент насыщения М) у них много выше, чем у парамагнетиков. Кроме того, так как в формировании эффективного магнитного поля в ферромагнетиках участвуют размагничивающий фактор и поле магнитной анизотропии, то частота ферромагнитного резонанса оказывается зависящей от формы образца.и,направления поля относительно осей легкого намагничивания.  [c.306]


Ферромагнитный кристалл состоит из большого числа очень малых областей — доменов, границы которых не совпадают с границами отдельных кристаллов2. Каждый домен спонтанно (самопроизвольно) намагничен до насыщения, но магнитные моменты отдельных доменов направлены различно. При отсутствии внешнего магнитного поля полный магнитный момент ферромагнетика равен пулю.  [c.96]

По вопросу о влиянип напряжения на демпфирующую способность материалов существуют различные точки зрения. Одни исследователи считают, что напряжение влияет на демпфирующую способность, другие исследователи придерживаются противоположных взглядов. Такое положение объясняется тем, что согласно вышеизложенному рассеяние энергии колебаний в материале зависит от причин, проявляющихся по-разному в зависимости от различных условий. При сравнительно высоких напряжениях (как, например, у лопаток турбин), возникает местная пластическая деформация, протекающая в отдельных зернах. Наряду с этим для ферромагнитных материалов на их де.мпфирующую способность влияет ферромагнитное состояние материала, в особенности магнитомеханический гистерезис (смещение границ самопроизвольно намагничивающихся ферромагнетиков— доменов ). Рассеяние энергии колебаний, обусловленное двумя указанными факторами, почти не зависит от частоты и увеличивается с ростом амплитуды напряжения. При малых же напряжениях влияние локальной пластической деформации и ферромагнитных свойств слабо проявляется. Здесь имеют решающее значение диффузионный п термоунругий эффекты. Рассеяние энергии колебаний, обусловленное этими процессами, зависит от частоты и почти не зависит от амплитуды колебаний. Многочисленные экспериментальные исследования показали, что внутреннее тренне при сравнительно больших напряжениях зависит от амплитуды.  [c.104]

Значительные трудности возникают при конструировании СВЧ устройств дециметрового и миллиметрового диапазона волн. Основные трудности на длинных волнах связаны с естественным ферромагнитным резонансом. Как известно, при увеличении длины волны напряженность резонансного поля уменьшается. При достаточно длинных волнах размагничивающие поля оказываются равными внешнему полю. При этом внутреннее поле в образце обращается в нуль. В этих условиях возникает доменная структура, а, следо вательно, и вторая область дисперсии, связанная с процессами вращения векторов намагниченности доменов, с естественным ферромагнитным резонансом. Эксперименты и расчеты показали, что верхняя граница естественного ферромагнитного резонанса зависит от намагниченности феррита и от его поля анизотропии. Поэтому для решения, ,проблемы длинных волн необходимо уменьшение намагниченности и анизотропии ферритов. В ряде случаев этот путь привел к существенным достижениям в области низких частот. В результате замены ионов железа ионами алюминия и хрома были созданы ферриты-алюминаты и ферриты-хромиты магния, со-нетающие малую намагниченонсть и малую константу анизотропии со сравнительно высокой точкой Кюри. Однако по мере уменьшения намагниченности эффективность работы устройств падает.  [c.42]

Поэтому была исследована вторая возможность решения проблемы длинных волн , заключающаяся в использовании более резонансных полей. В этих условиях потери от естественного ферромагнитного резонанса не влияют на параметры устройств, так как доменная структура разрушена, а релаксационные процессы, интенсивно протекающие при индуцированном резонансе также отсутствуют, так как не выполнено разонансное условие.  [c.42]

В однодоменных ферромагнитных частицах (в частицах малых размеров, в к-рых образование доменов энергетически невыгодно) могут идти только процессы вра-щеиия М. Этим процессам препятствует магнитная анизотропия разл. происхождения (анизотропия самого кристалла, анизотропия формы частиц, апизотропия упругих напряжений и др.). Благодаря анизотропии, Л/ как бы удерживается нек-рым внутр. полем  [c.492]


Смотреть страницы где упоминается термин Домен ферромагнитный : [c.355]    [c.138]    [c.185]    [c.185]    [c.185]    [c.344]    [c.348]    [c.522]    [c.62]    [c.229]    [c.274]    [c.290]    [c.13]    [c.632]   
Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.284 ]



ПОИСК



Газ доменный

Домены



© 2025 Mash-xxl.info Реклама на сайте