Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стали для сварных конструкций — Виды

Ограничение содержания в основном металле углерода и легирующих элементов, таких как марганец, никель, хром и молибден, повышающих склонность металла к закалке. Это требование следует учитывать в первую очередь при выборе марки стали для сварной конструкции. Необходимо уменьшать содержание этих элементов и в металле шва. Кроме того, нельзя допускать наличие дефектов в основном металле в виде шлаковых включений и расслоев.  [c.579]


Для сварных конструкций ряда аустенитных сталей, работающих при воздействии высоких напряжений изгиба, характерны разрушения в районе зоны сплавления, возникающие в процессе эксплуатации. Трещины (фиг. 15) идут по зоне сплавления или по границам зерен основного металла вблизи нее и могут достигать значительной величины, полностью пересекая все сечения стыка. Подобный вид разрушения наиболее часто встречается в сварных стыках толстостенных паропроводов, работающих под воздействием значительных напряжений изгиба из-за недостаточной компенсации температурных удлинений паропровода [16], [17]. В отдельных случаях подобные трещины могут возникать и в процессе термической обработки жестких конструкций со швами большой толщины.  [c.40]

Оценивать и прогнозировать процессы развития местной коррозии практически невозможно поэтому она во многих случаях приводит к внезапному выходу конструкции из строя. Значительно снижают работоспособность сварной конструкции такие виды избирательной коррозии, как межкристаллитная коррозия, характерная для сварных конструкций, изготовленных из коррозионно-стойких хромистой и хромоникелевой сталей, и ножевая коррозия по линии сплавления.  [c.11]

Металлопрокат из аустенитных нержавеющих сталей, как было отмечено выше, - наиболее распространенный вид металлопродукции из высоколегированных сталей, применяемый практически во всех областях промышленности и строительства. Такая востребованность аустенитных хромоникелевых сталей обусловлена уникальным комплексом физикомеханических и коррозионных свойств. Стали этого класса парамагнитны, имеют только им присущее сочетание прочности, пластичности, вязкости вплоть до водородных (-253 °С) и гелиевых (-269 °С) температур, свариваемости, коррозионной стойкости во многих средах окислительного характера. Эти стали широко используются для сварных конструкций различного назначения в химической, пищевой и других отраслях промышленности и машиностроении.  [c.352]

Главные (рис. 147) и запасные резервуары имеют сварную конструкцию в виде цилиндров с двумя выпуклыми днищами. Материалом для главных резервуаров служит листовая сталь толщиной 5—10 мм, для запасных — толщиной 2,5—4 мм. Дополнительные резервуары бывают сварной конструкции и литые.  [c.232]

При обоих видах испытаний критической температуре соответствует 65ч-70%, определяемая визуально. Среднее значение разности А = Тк. э — Т . с Для низколегированной стали составит примерно 35° С. Между и предельной температурой хрупкости Гк.пр, определяемой для несварных конструкций на образцах с надрезом создающим наибольшую концентрацию, характерную для данной конструкции, и с предельным концентратором (радиус закругления у дна надреза р 0,1-ь0,2 мм) для сварных конструкций, существует соотношение  [c.84]


Классификация сварных конструкций и виды сварных соединений. Исходный материал, применяемый для изготовления конструкций в строительстве, машиностроении и других отраслях производства, может быть разделен по сортаменту на следующие группы листы, трубы, прутки, штампованные, литые и другие заготовки. В зависимости от назначения в сварных узлах и конструкциях применяются все типы сталей, цветные металлы и их сплавы в однородных и разнородных сочетаниях.  [c.377]

Краткие сведения о составе и свойствах сталей. К низкоуглеродистым конструкционным сталям, из которых в настоящее время изготовляют большинство сварных конструкций, по принятой в сварочной технике классификации относят стали с содержанием до 0,25% С. Данные о составе и свойствах некоторых низкоуглеродистых конструкционных сталей, широко применяемых для изготовления сварных конструкций в виде листов и фасонного проката, приведены в табл. 9-2, 9-3 и 9-4. Примерно такой же состав имеют низкоуглеродистое стальное литье и поковки, применяемые для изготовления сварно-литых и сварнокованых конструкций.  [c.464]

Горячие трещины возникают в сварном шве в момент кристаллизации, когда металл находится в полужидком состоянии, т. е. когда металл чрезвычайно непрочен. Увеличение температурного интервала кристаллизации (т. е. расстояния между точками ликвидус и солидус) увеличивает склонность стали к горячим трещинам следовательно, увеличение содержания углерода и расширение вследствие этого интервала кристаллизации ведет к ухудшению свариваемости. Чем меньше в стали углерода, тем она лучше сваривается, т. е. менее чувствительна к горячим трещинам. Поэтому для сварных конструкций применяют низкоуглеродистые стали. В зависимости от применяемого вида сварки, толщины свариваемых изделий и других моментов ограничивают верхнее содержание углерода пределами 0,18%, 0,23%, иногда 0,30%.  [c.281]

Свариваемость в значительной степени определяется технологией и видами сварки. Стали, подвергаемые дуговой сварке, можно разделить на три группы по свариваемости 1) свариваемые без ограничений (сварка производится без подогрева и без последующей термической обработки соединения) СЕ <, 0,35) 2) ограниченно свариваемые (сварка возможна при подогреве 100 - 120 °С и последующей термической обработке сварного соединения) СЕ = 0,35...0,60) 3) стали, как правило, не применяемые для сварных конструкций СЕ >  [c.79]

Межкристаллитная коррозия (рис. 9) типична для коррозион-но-стойких сталей, проходит между кристаллами и поражает границы зерен. Склонность к коррозии появляется при неправильной термической обработке сталей, которые теряют прочность и вязкость. В первую очередь этот вид коррозии проявляется в виде растрескивания поверхности, а затем и полного распада. С точки зрения разрушения наиболее опасным местом сварных конструкций из аустенитных сталей является зона основного материала, прилегающая к металлу сварного шва. Так называемая ножевая коррозия напоминает по форме надрез ножом в узкой зоне на границе металла шва и основного g  [c.25]

Корпус 1 насоса формирует проточную часть и выполнен в виде полусферы сварной конструкции из углеродистой стали 20. Только посадочные поверхности в месте главного разъема защищены двухслойной антикоррозионной наплавкой. Корпус имеет -опорные лапы, которыми он крепится к фундаментной плите. В средней части лап предусмотрены пазы для установки сухарей, фиксирующих корпус в заданных координатах.  [c.153]

Кроме пооперационного контроля, для сварных соединений и конструкций из нержавеющих сталей применяют следующие виды контроля  [c.159]

Основным видом образцов сварных соединений для испытания на длительную прочность, как и при кратковременных испытаниях, являются образцы с поперечным швом. При этом, в зависимости от типа свариваемых изделий, форма образцов может изменяться. В большинстве случаев испытания ведутся на круглых десяти- или пятикратных образцах диаметром 8 или 10 мм. В случае сварки тонколистового материала используются плоские образцы, а для оценки свойств сварных стыков труб малого диаметра—трубчатые образцы. В пп. 2, 3 и 4 приведены значения пределов длительной прочности большинства используемых в сварных конструкциях энергоустановок сталей там же приведены указанные характеристики для металла швов и сварных соединений.  [c.22]


Рекомендуемая по условию снятия остаточных напряжений для сварных изделий из аустенитных сталей термообработка (стабилизация) при температурах 800—900° может приводить не к улучшению, а в ряде случаев к ухудшению свойств металла шва и околошовной зоны сварного соединения (п. 4, глава II). Поэтому оптимальным видом термической обработки для сварных соединений аустенитных сталей является аустенизация — закалка с температур 1050—1200° в зависимости от марки стали. Этот режим термической обработки принят в качестве основного для сварных стыков паропроводов и ряда других ответственных конструкций из аустенитных сталей. В случае необходимости снятия остаточных напряжений, созданных в процессе быстрого охлаждения при аустенизации, конструкция может дополнительно подвергаться стабилизации по режиму 800- 900° — 10 час.  [c.92]

Приведенный выше инженерный метод расчета малоцикловой прочности в номинальных напряжениях требует достаточно сложных экспериментальных исследований на натурных узлах и соединениях конструкций в зависимости от целого ряда факторов вида и способа нагружения, характеристик цикла, температуры, технологии изготовления и т. п. В связи с этим упомянутый выше расчет по местным деформациям (см. гл. 1 и 11) является более универсальным, так как он основан на результатах испытаний лабораторных образцов, используемых для оценки прочности конструкций в зонах концентрации напряжений. Применимость деформационных подходов к расчету сварных конструкций определяется наличием данных по теоретическим коэффициентам концентрации напряжений в сварных швах, циклическим свойствам материала различных зон сварного соединения и по уровню остаточных сварных напряжений. В 2 приведены предложения по определению коэффициентов концентрации напряя ений и деформаций в стыковых и угловых швах листовых конструкций. Для стержневых конструкций, выполняемых из фасонного проката, необходимы дополнительные исследования напряжений и деформаций в зонах их концентрации. Свойства строительных сталей при малоцикловом нагружении изучены достаточно подробно, и по ним получены величины параметров для построения расчетных кривых  [c.189]

Второй вид составляют операции высокотемпературной термической обработки сварных узлов закалка или нормализация при нагреве до температур 900—1000° С е последующим отпуском для конструкций из сталей перлитного, бейнитного и мартенситного классов и аустенитизация при температурах 1050—1200° С без последующей стабилизации или с ее введением для изделий из аустенитных сталей. Основной их целью при изготовлении сварных конструкций является перекристаллизация созданных сваркой участков с резко ухудшенными свойствами, восстановление которых отпуском невозможно. Такими участками могут быть участки крупного зерна в шве и околошовной зоны сварных соединений, выполненных, например, электрошлаковой сваркой, а также мягкие прослойки в зоне термического влияния при сварке термически упрочняемых сталей. При высокотемпературной термической обработке может также проходить залечивание зародышевых дефектов на границах зерен, созданных в процессе сварки и способствующих проявлению склонности сварных соединений к локальным разрушениям при высоких температурах. Так как с повышением легированности сталей вероятность ухудшения границ зерен при сварке повышается, то и необходимость высокотемпературной обработки для них возрастает. Однако в связи с тем, что проведение ее значительно сложнее операций отпуска, а для крупногабаритных изделий зачастую и невозможно, то к ней обращаются лишь в ограниченном числе случаев, когда отпуск или стабилизация не дают желаемых результатов.  [c.82]

В технических условиях УК36.24.12-100-97 приведены рекомендуемые марки сталей для сварных конструкций грузоподъемных машин, категории (класс прочности), стандарты на маг териал (ГОСТ или ТУ), вид проката, рекомендации по применению марок сталей, значения нормативных сопротивлений (предел текучести и временное сопротивление), а также дополнительные требования в виде ударной вязкости при отрицательной температуре и после мехстарения.  [c.485]

Хромоникелевые аустенитные стали по сравнению с хромистыми обладают рядом преимуществ, например хорошей свариваемостью, меньшей склонностью к охрупчиванию при повышенных температурах. Однако и хромоникелевые стали склонны к межкристаллитной коррозии, что особенно опасно для сварных конструкций. Этот вид коррозии обнаруживается после нагрева и выдержки при 400—800° С. Сталь с 17—20% Сг и 8— 11% N1 обладает высокой стойкостью в окислительных средах. Легирование этой стали молибденом, медью, палладием повышает стойкость ее в серной кислоте. Сталь устойчива в растворах щелочей и в органических кислотах при невысокой температуре. Легирование титаном, ниобием, танталом — катоднообразующими элементами устраняет склонность стали к межкристаллитной коррозии. Это же достигается закалкой стали (при 1100—1200° С). В морской воде, почве и в слабокислых растворах при содержании в них ионов хлора у хромоникелевых сталей часто наблюдается точечная коррозия, распространяющаяся в глубину металла. Легирование молибденом препятствует развитию точечной коррозии, особенно в средах, содержа щих хлориды сталь становится более стойкой и в ряде других сред (органические кислоты, соляная и серная кислоты). Легирование одновременно медью (2%) и молибденом (2%) значительно повышает стойкость в серной кислоте при всех концентрациях и повышенных температурах, что особенно важно для химической промышленности.  [c.53]


Сталь сваривается всеми видами сварки, но с обязательным отпуском после сварки при 550—580° С для снятия внутренних напряжений. Для сварных конструкций, изготовляемых из листов, поковок, колец, применяют сталь ЭИ962, являющуюся модификацией стали ЭИ961.  [c.136]

Простейшим и обязательным видом контроля готового изделия является осмотр выполненных сварных швов и прилегающего к ним района с целью выявления дефектов в виде трещин, непроваров, подрезов и пр. Для сварных соединений из аустенитных сталей осмотр производится на предварительно прошлифованной и протравленной поверхности швов. В качестве травителя наиболее часто используется реактив Марбле. Травление отполированной поверхности рекомендуется также в ряде случаев и для сварных конструкций из перлитных теплоустойчивых или хромистых сталей.  [c.95]

Ко фозионно-стойкие стали для применения в солевых средах — Виды поставляемого полуфабриката 247 — Коррозионная стойкость 245 — Марки 244—245 — Механические свойства 246 — Назначение 244—245 — Режимы термообработки 246 — Технологические свойства 246 — Химический со-стпв 245 — Цены 247 Коррозионно-стойкие стали для применения в средах повышенной и высокой агрессивности для сварных конструкций, работающих в кислотах — Коррозионная стойкость 259 — Коррозионные среды 260 — Марки 257— 258 — Механические свойства 259 — Назначение 257—258 — Режимы термообработки 259 — Технологические свойства 261 — Химический состав 258  [c.381]

Хромомарганцовистокремнистые стали с содержанием углерода 0,20—0,25% можно применять для сварных конструкций и некоторых поковок с большим сечением вместо более дорогостоящих никелевых сталей. Ударная вязкость стали 20ХГС снижается с 1180—1765 кДж/м при нормальных температурах до 195—590 кДж/м при 173 К в зависимости от способа термической обработки и вида испытания — статического или динамического 43].  [c.31]

Сталь 20ХГС поставляется в виде прутков поковок, штамповок, листов различных размеров и труб для сварных конструкций. Применяется она для изготовления деталей, работающих при повышенных напряжениях болты, сварные конструкции из листов и труб и деталей, изготовляемых ковкой и штамповкой в горячем состоянии с последующей механической обработкой.  [c.208]

В связи с этим следует расширять применение полуспокойных сталей. Исследования показали, что полуспокойную низкоуглеродистую сталь СтЗпс (группы Б и В по ГОСТ 380—71) в листовом, фасонном и полосовом прокате толщиной до 10 мм включительно и в сортовом (круг, квадрат, арматура) размером до 16 мм можно применять для сварных конструкций наравне со спокойной сталью без каких-либо ограничений по температурным условиям эксплуатации и виду нагрузок. Прокат больших толщин из полуспокойной стали рекомендуется использовать в сварных конструкциях при любых нагрузках, но с некоторыми ограничениями по температуре эксплуатации. С целью снятия этих ограничений взамен толстого проката из спокойной стали ВСтЗ следует применять сталь ВСтЗГпс (ГОСТ 380—71) с повышенным содержанием марганца (до 1,1%). Это обеспечивает высокие механические свойства и ударную вязкость сварных соединений.  [c.138]

Свариваемость рассматриваемых сталей и сплавов затрудняется мпогокомпонеитностью их легирования и разнообразием условий эксплуатации сварных конструкций (коррозионная стойкость, жаростойкость или жаропрочность). Общей сложностью сварки является предупреждение образования в шве и околошовной зоне кристаллизационных горячих трещин, имеющих межкристаллит-пый характер, наблюдаемых в виде мельчайших микронадрывов и трещин. Горячие трещины могут возникнуть и при термообработке или работе конструкции нри повышенных температурах. Образование горячих трещин наибо,лее характерно для крупнозернистой структуры металла шва, особенно выраженной в многослойных швах, когда кристаллы последующего слоя продолжают кристаллы предыдущего слоя.  [c.286]

Хромокремнемарганцевые стали Они обладают высокой прокаливаемостью и механическими свойствами. К ним относятся стали марок 20ХГС, 25ХГС, ЗОХГС. Стали хромансил применяют в виде листов и труб для ответственных сварных конструкций. При введении дополнительно никеля 1,4.. 1,8% (ЗОХГНА) прочность стали повышается =1650 МПа, Сид =  [c.94]

Если иметь в виду необходимость изучения поведения сварных конструкций, изготовленных с применением широкого круга конструкционных сталей и присадочных материалов, а также накопление усталости и выполнение сварки в самом широком диапазоне температур (до минус 50— —70°С), то вопрос о влиянии усталостных нагрузок на хладостойкость сварного соединения в настоящее время исследован далеко не в полной мере. Для разработки эффективных мер по обеспечению хладостой-кости сварных конструкций необходимо усилить исследования их уста-  [c.81]

ГТросвечивание проникающими излучениями производи+ся в целях обнаружения внутренних дефектов шва трещин, раковин, рыхлости, непроваров, шлаковых включений и т. п. Сварные соединения контролируются в соответствии с ГОСТ 7512—69 и другими нормативными материалами. Обязательному просвечиванию подлежат все сварные соединения из сталей различных классов. Должны также быть просвечены все места пересечений и сопряжений сварных соединений вне зависимости от их категории и класса стали соединяемых элементов. Проведение ультразвуковой дефектоскопии не исключает необходимости просвечивания проникаюш,ими излучениями, при этом просвечивание участков, подлежаш,их этому виду контроля, не засчитывается в регламентированные объемы контроля. Объем просвечивания устанавливается Правилами [9] и может быть уменьшен по согласованию с проектной организацией, материа-ловедческой организацией, ответственной за выбор материалов для данной конструкции, с местными органами Госгортехнадзора в случае серийного изготовления предприятием однотипных изделий при неизменном технологическом процессе, специализации сварщиков на отдельных видах работ и высоком качестве сварных соединений, подтвержденном результатами контроля за период не менее одного года.  [c.215]

Скреперные ковши применяются различной конфигурации и емкости в зависимости от размеров кусков и характера транспортируемого материала. Для уменьшения износа скреперный ковш снабжается прочной стальной режущей кромкой, выполненной в виде ножа нлн зубчатой планкп из высококачественной марганцевой стали. Завод имени XV-летия ЛКСМ Донбасса изготовляет скреперы емкостью 0,75—3,5 м . Весь скрепер сварной конструкции, за исключением крепления заклепками дуги ножа (нижней части нижнего пояса) и зубцов. Зубцы стальные литые (СТЛ ОСТ 7504), нож из листовой стали (СТ-5). Материал остальных частей скрепера СТ-3 (фиг. 262,в).  [c.404]

Стали 15Х25Т и 15X28 используют чаще без термической обработки для изготовления сварных деталей, работающих в более агрессивных средах и не подвергающихся действию ударных нагрузок, при температуре эксплуатации не ниже —20 °С. Эти стали обладают крупнозернистостью в литом виде и склонны к сильному росту зерна при нагреве свыше 850 С (например, при сварке), что сопровождается охрупчиванием стали. Измельчить зерно и повысить пластичность термической обработки нельзя, так как стали не претерпевают а-> у-нревращений сварные конструкции из стали 15X28 склонны к межкристаллит-ной коррозии. Углерод и азот способствуют охрупчиванию стали (повышают порог хладноломкости) и являются причиной меж-кристаллитной коррозии.  [c.295]


По воздействию на свойства материала конструкции операции термической обработки могут быть разбиты па два вида. К первому из них относятся операции, отпуска при температурах 550— 750 С узлов из сталей перлитного, бейнитного и мартенситного классов-и стабилизации при температурах 750—900° С узлов из аустенитных сталей. Основным их назначением применительно к сварным конструкциям является снятие сварочных напряжений, устранение подкалки шва и зоны термического влияния, а также эффекта деформационного старения для сталей первой группы и снятия сварочных напряжений и етабилпза7ши структуры для второй. Явлений перекристаллизации, а также залечивания возникших при сварке зародышевых дефектов в условиях отпуска или стабилизации не происходит.  [c.82]

Хотя очевидно, что одной из основных прНчИн появлений указанных трещин является высокая жесткость данной конструкции вварных толстостенных штуцеров, вызвавшая появление значительных реактивных сварочных напряжений, в то же время определенная ориентация трещин в околошовной зоне и отсутствие их до отпуска, проверенное тщательным ультразвуковым контролем, несомненно свидетельствует о чувствительности подобных сталей к трещипообразованию в сварных конструкциях при термической обработке. Склонность к этому виду растрескивания показали сварные соединения ряда конструкционных сталей повышенной прочности, нашедших широкое применение в американской, английской и японской практике, в том числе и для сосудов высокого давления [95].  [c.95]


Смотреть страницы где упоминается термин Стали для сварных конструкций — Виды : [c.257]    [c.66]    [c.262]    [c.171]    [c.259]    [c.252]    [c.216]    [c.123]    [c.214]    [c.316]    [c.270]    [c.25]    [c.410]    [c.280]    [c.300]    [c.172]    [c.369]   
Машиностроительное стали Издание 3 (1981) -- [ c.0 ]



ПОИСК



Сварные конструкции



© 2025 Mash-xxl.info Реклама на сайте