Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нейтроны, атомное рассеяние

Нейтроны, атомное рассеяние 93  [c.423]

В (3.20) сводится к замене сг( ->Г) на а(——Ю в правой части (соотношение (3.20) в том виде, как оно записано, получается, если нейтрон-атомное взаимодействие симметрично относительно пространственного отражения). Свойство взаимности служит дополнительный причиной для отделения в (3.11) деления от рассеяния ядро, описывающее деление, не обладает этим свойством.  [c.194]

На характере изложения II части Кинематическая дифракция сказалось наличие ряда неясных проблем в физике рассеяния коротких волн. Поскольку кинематическое приближение отвечает относительно слабому взаимодействию излучения с веществом, а соотношение амплитуд атомного рассеяния рентгеновских лучей /х, электронов /е и нейтронов /п имеет вид  [c.5]


Фиг. 4.3. Изменение амплитуды атомного рассеяния для нейтронов амплитуды атомного рассеяния для рентгеновских лучей (при определенных значениях (sin 0)/А,) в зависимости от атомного веса [10]. Штриховая кривая отвечает рассеянию на потенциале ядер. Фиг. 4.3. Изменение <a href="/info/618135">амплитуды атомного рассеяния</a> для нейтронов <a href="/info/618135">амплитуды атомного рассеяния</a> для <a href="/info/1712">рентгеновских лучей</a> (при определенных значениях (sin 0)/А,) в зависимости от <a href="/info/287194">атомного веса</a> [10]. Штриховая кривая отвечает рассеянию на потенциале ядер.
Поскольку размеры ядра атома намного меньше длины волны теплового нейтрона, амплитуда атомного рассеяния для нейтронов будет изотропной, не зависящей от угла рассеяния и будет представляться однозначной длиной рассеяния Ь. Величина Ь включает потенциальное рассеяние на жесткой сфере соответствующего радиуса и члены резонансного рассеяния, возникающего за счет взаимодействия нейтрона с ядром. Формула Брейта — Вигнера для рассеяния на изолированном ядре с нулевым спином дает  [c.94]

Для магнитных материалов нужно различать две амплитуды атомного рассеяния для нейтронов — амплитуду ядерного рассеяния Ь, не зависящую от угла рассеяния, и амплитуду магнитного рассеяния р, которая зависит от распределения неспаренных электронных спинов и дается выражением  [c.144]

За исключением очень малых углов рассеяния, для электронов амплитуды атомного рассеяния с атомным номером возрастают плавно, но не так быстро, как для рентгеновских лучей. Разница эта наиболее очевидна для атома водорода. Рассеяние электронов зависит от потенциального поля ядра, которое частично экранируется электронами на орбитах. Ионизация атомов уменьшает экранирование и увеличивает амплитуду рассеяния. Вайнштейн [3811 оценил отношение рассеяния углеродом и водородом как - 10 для рентгеновских лучей, в то время как для электронов оно составляет лишь 3 или 4. Однако ввиду легкости обнаружения атомов водорода с помош,ью дифракции нейтронов использование дифракции электронов для этих целей ограничено только особыми случаями, когда методы дифракции нейтронов неприменимы .  [c.146]

Для рентгеновских лучей и нейтронов главный эффект поглощения обычно не дает вклада в дифракционную картину. Падающие рентгеновские лучи могут возбудить электроны внутренних оболочек атомов образца, теряя при этом большую часть своей энергии. Характеристическое излучение, испускаемое возбужденными атомами, обычно отфильтровывается. Как было показано в гл. 4, амплитуды атомного рассеяния для атомов образца в результате становятся комплексными и состоят из действительной и мнимой частей / =/о +Г + Мнимая часть связана с поглощением. Например, рассеянное излучение в направлении падающего луча дает смещение по фазе на я/2 и амплитуду в электронных единицах фо + /(0)- Следовательно, /" (0) вычитается изт о и, таким образом, уменьшается интенсивность падающего излучения.  [c.280]


Обозначения в таблице —амплитуда когерентного рассеяния нейтронов, 5 —сечение когерентного рассеяния элемента 5 = 4я(й )2, где 6 — амплитуда когерентного рассеяния для элемента в связанном состоянии (величина соответствует атомному множителю рассеяния для рентгенов- ских лучей), ст —полное сечение рассеяния элемента ст==5- -5, где з — сечение некогерентного рассеяния, /х —функция атомного рассеяния рентгеновских лучей.  [c.845]

Однако до обсуждения различных опытов, в которых особенно ярко наблюдаются свойства указанного типа, установим некоторые простые факты и общие формулы, которыми мы будем пользоваться в дальнейшем. Предположим, что на атом или, лучше, па атомное ядро (потому что практически всегда нейтроны рассеивают только ядро) падает нейтрон нейтрон будет рассеян на известный угол (рис. 1, а). Это — схема столкновения в корпускулярном представлении в волновом представлении имеется группа падающих волн, рассеивающихся подобно свету, т. е. в виде группы сферических волн, исходящих из центра рассеяния (рис. 1, б). Плоская падающая волна, распространяющаяся вдоль положительного направления оси х, представляется экспоненциальной функцией  [c.114]

Данные опыта с нейтронами, энергия которых равна 90 Мэе, показывают, что представление о ядре как о черном непрозрачном шарике (1=1) неточно. Ядро -при таких энергиях нейтронов становится частично прозрачным, и сечение взаимодействия нейтронов с ядром будет меньше 2nR . Тем не менее изучение рассеяния быстрых нейтронов ядрами является одним из наиболее точных методов определения радиуса атомных ядер.  [c.352]

Аналогичное понятие (атомный фактор) используется при описании рассеяния электронов, рентгеновских лучей и нейтронов.  [c.269]

Таблица 41.3, Сечения поглощения н рассеяния для нейтронов с энергией 0,0253 эВ (элементы с атомными Таблица 41.3, <a href="/info/144453">Сечения поглощения</a> н рассеяния для нейтронов с энергией 0,0253 эВ (элементы с атомными
Таблица 41 4. Сечения деления и захвата, рассеяния и полные сечения для нейтронов с энергией 0,0253 эВ и элементов с атомными номерами 90—100 Таблица 41 4. <a href="/info/15804">Сечения деления</a> и захвата, рассеяния и <a href="/info/243631">полные сечения</a> для нейтронов с энергией 0,0253 эВ и элементов с атомными номерами 90—100
Более детальную информацию о распределении ядерного вещества можно получить из анализа упругого рассеяния нуклонов с энергией ГэВ на ядрах. Очевидно, что необходимым условием этого является существование теоретической формулы, связывающей дифференциальное сечение рассеяния с плотностью распределения ядерной материи. Несмотря на большие неопределенности теоретического анализа частиц, взаимодействующих посредством ядер-ных сил, за последнее десятилетие правдоподобная формула такого рода была получена и апробирована на опыте. Общая картина распределения ядерной материи, найденная из упругого рассеяния ядрами нуклонов с энергией 1 ГэВ, приведена на рис. 2.17. Количественное изучение кривых этого рисунка приводит к заключению, что в целом распределения протонов и нейтронов в атомных ядрах являются одинаковыми. Ядерное вещество характеризуется приблизительно постоянной плотностью внутри ядра, равной 0,17 нуклон/ферми 2,7-10 г/см , и быстрым спаданием плотности на границе ядра в пределах поверхностного слоя толщиной 2,5 ферми.  [c.61]

Так как энергия связи в дейтроне аномально мала и так как нейтрон дейтрона 90% времени находится вообще вне поля действия сил со стороны протона (см. гл. V, 2), то рассеяние электрона высокой (сотни МэБ и выше) энергии на нейтроне дейтрона будет идти почти так же, как на свободном нейтроне. Электрический форм-фактор пиона был измерен в экспериментах, в которых пучок отрицательных пионов с энергией 100 ГэВ рассеивался на атомных электронах мишени. Рассеяние пучка тяжелых частиц на легких (почти в 300 раз легче) частицах мишени очень невыгодно энергетически. Однако энергия 100 ГэВ настолько велика, что соответствующая энергия в СЦИ оказывается равной около 200 МэВ, что согласно (4.64) достаточно для определения среднеквадратичного радиуса пиона.  [c.388]


Указывается [2], [4] на возможность применения бериллия в качестве отражателя п замедлителя в атомных реакторах в силу малого атомного веса, малого эффективного сечения захвата тепловых нейтронов и высокого эффективного сечения рассеяния. В силу этих же свойств он пригоден для плакировки . стержней ядерного горючего.  [c.519]

Для снижения тепловых потерь активная зона высокотемпературного ядерного реактора имеет тепловую изоляцию, внутренняя часть которой может быть выполнена из двуокиси циркония. Внутренний слой тепловой изоляции служит одновременно и в качестве отражателя нейтронов. Ядра циркония имеют большое поперечное сечение рассеяния и малое сечение захвата, а также высокую атомную плотность — ценные свойства для отражателей нейтронов.  [c.67]

АЛЬФА-ЧАСТИЦА — ядро Не, содержащее 2 протона и 2 нейтрона. Масса А.-ч, т=4,00273 а. е. м,= = 6,644.10 2 г, спин и магн. момент равны 0. Энергия связи 28,11 МэВ (7,03 МэВ на 1 нуклон). Проходя через вещество, А.-ч. тормозятся за счёт ионизации и возбуждения атомов и молекул, а также диссоциации молекул. Длина пробега А,-ч. в воздухе 1=аи , где v — начальная скорость, 0=9,7-10 с см (для Z 3—7 см). Для плотных веществ / 10 см (в стекле /=4-10 см). Многие фундаментальные открытия в ядерной физике обязаны происхождением изучению А,-ч. исследование рассеяния А.-ч. привело к открытию атомного ядра, облучение А.-ч. лёгких элементов — к открытию ядерных реакций и искусственной радиоактивности.  [c.64]

Особые дифракц. явления возникают при прохождении нейтронов через кристаллы, когда интерференция нейтронных волн, рассеянных на регулярно расположенных рассеивателях, приводит к усилению интенсивности воля в направлениях, соответствующих зеркальному отражению от атомных плоскостей кристалла при выполнении Брэгга — Вульфа условия. IX = 2 соз0, где I — кратность отражения, д —. межплоскостное расстояние, 6 — угол падения нейтронов на отражающую атомную плоскость.  [c.273]

Р. н. играет важную роль в исследовании конденси-ров. сред. Длина волны де Бройля для тепловых нейтронов (см. Нейтронная физика) при обычных темп-рах порядка 0,1 нм, т. е. совпадает с межатомными расстояниями в кристаллах и молекулах. Поэтому дифракция нейтронов, упруго рассеянных на кристаллич. решётке, позволяет исследовать атомную структуру кристаллов (см. Нейтронография структурная).  [c.273]

Первоначальную теорию дифракции нейтронов создали физики-ядерщики, которые использовали свои профессиональные понятия ди еренциальных сечений, а не амплитуды атомного рассеяния. Впоследствии варианты этой теории разработали структурщики, которые внесли в нее понятия, используемые в дифракции рентгеновских лучей, и специалисты по физике твердого тела, описывающие свои эксперименты с помощью волновых векторов к, зон Бриллюэна и т.д. Дополнительное усложнение, которое было связано с изучением неупругого рассеяния в процессах, зависящих от времени и включающих фононы и магноны, привело главным образом к развитию этого, заимствованного из физики твердого тела подхода, а не к обобщению методов фурье-преобразований.  [c.13]

Таким образом, взаимодействие влетающего нуклона (например, нейтрона) с достаточно тяжелым атомным ядром можно подразделить на рассеяние без образования промежуточного ядра и на поглощение, пр1шодящее к образованию промежуточного ядра.  [c.198]

Впоследствии экспериментальное изучение дифракционного рассеяния было проведено другими методами в широком интервале энергий и для различных атомных ядер. Результаты опытов (в частности, смещение положения максимумов в зависимости or энергии нейтронов) неизменно подтверждали дифракционный характер явления. Заметим, что дифракционное рассеяние должно наблюдаться (и наблюдалось) и для заряженных частиц, если принять меры к устранению маскирующего эффекта от ре-зерфордовского рассеяния.  [c.350]

Поскольку рассеяние тепловых нейтронов вообще не зависит явно от атомного номера исследуемого вещества, то с помощью дифракции нейтронов легко выявляется различие атомов с близкими. Z (например, при исследовании упорядочения атомов Fe и Со в системе Fe — Со), что трудно сделать рентгенографически и электронографически. При использовании дифракции нейтронов возможно изучение изотопических (часто рассеивающие способности изотопов одного и того же элемента значительно различаются) и спиновых различий атомов, входящих в решетку, причем такие различия не замечают ни рентгеновские лучи, ни электроны. В то же время при дифракции нейтронов могут оказаться неразличимыми (имеющими приблизительно равную амплитуду рассеяния) совершенно разные атомы. Так как легкие вещества рассеивают нейтроны также эффективно, как и тяжелые, то с помощью нейтронографии успешно проводят изучение кристаллической структуры веществ, в состав которых входят одновременно атомы легких и тяжелых элементов (атомы водорода в гидриде циркония, углерода в аустените), а также структур из легких элементов (льда, гидрида натрия, дейтерита натрия, графита). Такие структуры нельзя исследовать с помощью рентгеновских лучей и затруднительно с помощью электронов нз-за незначительного рассеяния их легкими элементами.  [c.37]

Недавно Уилкинсон и др. [221] изморили когерентное и некогерентное рассеяние нейтронов на электронах ванадия, свинца и ниобия выше и ниже Т0ЧК11 перехода. Ни в одном из этих случаев не было обнаружено изменения когерентного рассеяния или диффузного фона. Этот результат показывает, что при переходе в сверхпроводящее состояние не нронсходпт зал1етных изменении электронного распределения. Исследование рассеяния Нейтронов на ядрах в свинце и ниобии показало, что при переходе не происходит резко выраженного изменения колебаний атомной решетки ). Эти же авторы показали, что полное сечение для тепловых нейтронов у олова в нормальном и сверхпроводяш,ем состояниях одинаково в пределах 1 %.  [c.672]


Таблица 41.2, Сечемия поглощения и рассеяния для нейтронов с анергией 0,0253 эВ (элементы с атомными номерами 1 — 60) [21] Таблица 41.2, Сечемия поглощения и рассеяния для нейтронов с анергией 0,0253 эВ (элементы с атомными номерами 1 — 60) [21]
На рис. 1.1 изображена в логарифмическом масштабе шкала различных характерных длин в ядерной физике. Расстояниям порядка см соответствуют процессы взаимодействия v-квантов с электронами и их двойниками — позитронами (см. гл. VII, 6, а также гл. VIII, 4). Например, такие расстояния характерны для комптон-эффекта — рассеяния у"1 вантов на электронах. Между 10" и 10 см располагаются радиусы атомных ядер. Размеры примерно 10" см имеют протоны и нейтроны — частицы, из которых составлены атомные ядра. Такого же порядка размеры имеет и большинство других элементарных частиц (пионы, каоны, гипероны,. ..). Этим же расстоянием определяется радиус действия сил между протонами, нейтронами и большинством других элементарных частиц. Поэтому длина 1 ферми = 10 см является самым характерным расстоянием для всей ядерной физики. Отметим, что не все элементарные частицы имеют размеры порядка 10" см. Радиусы электронов и некоторых других частиц столь малы, что до сих пор не поддаются наблюдению.  [c.8]

Из активной зоны реактора выходит мощный поток нейтронов, примерно в 10 раз превышающий излучение, предельно допустимое санитарными нормами. Кроме того, в результате р-распада образуется поток Y-излучения примерно такой же мощности. Защита должна в достаточной степени ослаблять оба потока. Как мы знаем из гл. VIII, 4, наилучшей защитой от уизлучения являются материалы с большим атомным номером Z. Для защиты от нейтронов наряду с хорошими поглотителями необходимы материалы, эффективно замедляющие нейтроны, потому что проникающая способность особенно велика у быстрых нейтронов. В качестве замедлителей в защите используются легкие элементы и элементы, на которых идет интенсивное неупругое рассеяние нейтронов (железо, свинец и др.).  [c.581]

Так как нарушения в неорганических изоляционных материалах обусловлены в основном атомными смещениями, то можно предполагать, что у-излучение не создает дополнительных трудностей. Правда, комнтон-электроны, получающиеся при рассеянии у вантов, будут вызывать смещения атомов, но опыты с полупроводниками показали, что их вклад мал но сравнению со смещениями, возникающими под действием быстрых нейтронов.  [c.398]

Исследование конденсаторов, изготовленных из керамических материалов, подобных тем, из которых делают катушки для точных проволочных сопротивлений [54], показывает, что изменения таких диэлектрических характеристик, как коэффициент рассеяния и сопротивление изоляции, незначительны при потоках тепловых нейтронов 2,7-10 нейтрон I см сек), надтепловых 4-10 нейтронI см" сек) и быстрых 3,9-10 нейтрон I см сек). Общая интегральная доза у-облучения в этом опыте составляла 2,4-10 зргЫ. До облучения средняя величина электросопротивления керамических материалов составляла 10 ом. Во время облучения сопротивление снизилось до 10 ом, а после облучения полностью восстановилось. Результаты показывают, что подобные изменения в окиси алюминия могут нанести ущерб лишь сопротивлениям с номиналами более 1 Мом. Незначительные остаточные нарушения, наблюдаемые в керамических материалах, вероятно, связаны с атомными смещениями.  [c.398]

ZrBj), силицидов, сульфидов. Технология получения такой керамики состоит в спекании порошкообразного сырья." Новая керамика возникла в связи с требованиями реактивной авиации и ракетостроения, для которых необходимы высокопрочные термоустойчивые конструкционные и теплоизоляционные материалы, и с требованиями атомной промышленности, где необходимы особые ядерные свойства (захват, рассеяние или поглощение нейтронов, противостояние радиоактивному облучению), высокая огнеупорность, термостойкость и коррозионная стойкость.  [c.357]

При дифракции частиц того или иного сорта проявляется физ. специфика их взаимодействия с веществом. Так, рассеяние электронов определяется эл,-статич. потенциалом атомов ф (г), так что U = e(p r), где е — заряд олсктропа при рассеянии нейтрона оси, вклад в потенц. энергию U вносит их взаимодействие с ядром, а также с магн. моментом атома (см. Дифракция электронов, Дифракция нейтрона/), Дифракция атомов и молекул). Тем не менее явления Д. ч. всех типов, а также дифракции рентгеновских лучей очень сходны и оггисываются одинаковыми или очень близкими ф-лами, различающимися множителями — атомными амплитудами. Мн. явления дифракции света также на.ходят аиалоги в Д. ч.  [c.680]

ЗАМЕДЛЕНИЕ НЕЙТРОНОВ — уменьшение кинетич. янергии S нейтронов в результате многократных столкновений их с атомными ядрами среды. Механизм 3. н. зависит от энергии нейтронов. Если S больше порога неупругого рассеяния нейтрона на ядре ( у 0,1 — 10 МэВ), то иейтроны расходуют энергию гл. обр. на возбуждение ядер п ядерные реакции, сопровождающиеся вылетом нейтронов. При одном соударенш нейтрон в среднем теряет значит, долю своей энергии и после небольшого числа столкновений (часто одного) переходят в область энергий Дальне11шее 3. н. происходит только за счёт упругого ядерного рассеяния.  [c.44]

МАГНИТНАЯ НЕЙТРОНОГРАФИЯ — исследование атомной магн. структуры кристаллов методами упругого когерептного рассеяния медленных нейтронов, длина волны к-рых порядка межатомных расстояний в кристалле (>. 10" мкм, см. Дифракция нейтронов). Наличие у uoiiTponOB магн. момента приводит к тому, что наряду с рассеянием нейтрона на атомных ядрах происходит т. U. магв. рассеяние, обусловленное в.заи-модействием магн. момента нейтрона с магн. моментами электронных оболочек атомов.  [c.656]


Смотреть страницы где упоминается термин Нейтроны, атомное рассеяние : [c.13]    [c.5]    [c.95]    [c.385]    [c.312]    [c.68]    [c.88]    [c.553]    [c.104]    [c.63]    [c.14]    [c.157]    [c.288]    [c.669]    [c.670]    [c.689]   
Физика дифракции (1979) -- [ c.93 ]



ПОИСК



Атомный вес

Атомный вес нейтрона

Нейтрон

Рассеяние нейтронов



© 2025 Mash-xxl.info Реклама на сайте