Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покрытия защитные влияние различных факторов

Среди применяемых средств защиты металлов от коррозии защитные покрытия получили наибольшее распространение, но их выбор и применение в каждом конкретном случае далеко не всегда научно обоснованы. Это объясняется многокомпонентно-стью системы металл-покрытие и влиянием различных факторов на поведение этой системы. Надо отметить, что электрохимический характер коррозии оборудования в отрасли является преобладающим в связи с присутствием воды в рабочих средах. Коррозионный процесс под покрытием — металлическим или лакокрасочным — также является электрохимическим по своей природе. Поэтому современные исследования направлены на изучение не только физико-химических процессов, происходящих в материале покрытий при контакте их с жидкостями и газами, но и электрохимических процессов в системах "металл-покрытие-электролит".  [c.6]


Более существенную информацию, очевидно, удалось бы получить, подойдя к оценке прочности связи защитных покрытий с другой стороны, определяя адгезию жидких (расплавленных) покрытий к твердой поверхности стали. В этом случае, в результате измерений можно было бы получить информацию о межчастичном взаимодействии покрытия и металла. Определение адгезии материала покрытий в жидком состоянии к твердой поверхности стали, очевидно, позволило бы в большей степени пролить свет на физико-химические явления, наблюдаемые при формировании защитных покрытий на поверхности металла, и лучше изучить влияние различных факторов (состава материала покры-  [c.44]

Влияние различных факторов на величину активной поверхности алюминия, покрытого защитной пленкой  [c.65]

Таким образом, приведенные в работе экспериментальные данные свидетельствуют о необходимости изучения влияния различных факторов на защитные свойства полимерных покрытий, получаемых. методом ЭЖ1.  [c.143]

Металлические покрытия, в основном алюминиевые и цинковые, применяют для защиты от коррозии в минерализованных водах, содержащих различные газы, а также в морской воде. В хлорсодержащих растворах как алюминий, так и цинк — аноды по отношению к стали, защищая ее электрохимически. Однако в процессе коррозии в результате поляризации или влияния других факторов возможно изменение знака покрытия. Такой эффект наблюдается для цинковых покрытий в горячей воде, особенно если в систему попадает кислород. Максимум скорости коррозии достигается в температурном интервале 338—343 К, что связано со строением окисной пленки, отличающейся пористостью и обеспечивающей доступ кислорода к металлу. Совместно наличие кислорода и углекислоты в минерализованной воде значительно ускоряет коррозию цинкового покрытия (табл. 20). При этом мягкая и дистиллированная вода более агрессивна по отношению к цинку, чем жесткая, которая способствует образованию защитных пленок.  [c.79]

Рассматриваются причины коррозии материалов и сплавов— электрохимическая и другие виды коррозии, протекание процесса коррозии в различных условиях, основные закономерности протекания коррозии во времени и влияние на интенсивность процесса различных факторов. Дается аналитический расчет длительности работы детали из условия коррозионной стойкости. Изучается защита от коррозии при помои н защитных покрытий.  [c.294]


Изучение влияния исходной надмолекулярной структуры покрытий на их устойчивость к процессам старения позволило установить, что характер и плотность упаковки структурных элементов определяют механизм разрушения покрытий под воздействием эксплуатационных факторов. Закономерности образования надмолекулярных структур практически не зависят от условий старения покрытий. Изменение этих условий определяет лишь вид и степень разрушения покрытий, что, тем не менее, существенно сказывается на защитном действии покрытий. Старение покрытий в различных условиях эксплуатации проявляется в потере блеска, изменении цвета, мелении, растрескивании, отслаивании и возникновении подпленочной коррозии. Экспериментальные данные свидетельствуют о том, что практически все свойства покрытий обусловлены процессами структурных превращений, протекающих на молекулярном, топологическом, надмолекулярном и фазовом уровнях.  [c.84]

Наряду с положительным защитным влиянием от воздействия газовой среды, покрытие изменяет- физико-механические свойства поверхностного слоя, в частности уменьшается пластичность его при низких температурах, что снижает сопротивление термической усталости. Повреждающее действие покрытий можно выявить при испытаниях на термоусталость без воздействия газовой среды, т. е. при разделении двух различно влияющих факторов снижения механических свойств и защитного действия от влияния среды. При этом выясняется, что долговечность материала с покрытием меньше, чем материала без покрытия. Влияние алитирования на сопротивление термической усталости литейного никелевого сплава по-казано на рис. 5.14. Алитирование круглых образцов с диаметром рабочей зоны 6,5 мм производилось диффузионным методом при 950 С в течение 4 ч, глубина алитированного слоя составляла 40 мкм. Как видно, алитирование несколько снижает долговечность при термоциклическом нагружении. Однако влияние алитирования уменьшается по мере уменьшения размаха деформаций.  [c.174]

Рассмотрим влияние основных факторов на защитные свойства покрытий. Сравнивая коррозионную стойкость цинковых покрытий, полученных различными методами (рис. 7.19), можно заметить, что применение электрохимических покрытий предпочтительно. Их высокая защитная способность объясняется, с одной стороны, образованием более чистых в химическом отношении осадков, с другой стороны, мелкозернистой и плотной структурой. Термообработка цинковых покрытий при 400. .. 500 °С в течение  [c.185]

Шероховатость стенок, в свою очередь, определяется рядом факторов материалом стенок характером механической обработки внутренней поверхности трубы, от чего зависят высота выступов шероховатости, их форма, густота и характер их размещения на поверхности наличием или отсутствием в трубе ржавчины, коррозии, защитных покрытий, отложения осадков и т. д. Для грубой количественной оценки шероховатости вводится понятие о средней высоте выступов (бугорков) шероховатости. Эту высоту, измеряемую в линейных единицах (рис. 4.17), называют абсолютной шероховатостью и обозначают буквой /г. Как показали опыты, при одной и той же абсолютной шероховатости влияние ее на гидравлические сопротивления и распределение скоростей различно в зависимости от диаметра трубы, поэтому вводится понятие об относительной шероховатости, измеряемой отношением абсолютной шероховатости к диаметру трубы к/(1.  [c.171]

Большинство материалов имеют относительно плохую устойчивость к дождевой эрозии при контакте самолета во время полета с дождем, снегом или льдом. Скорость, угол удара, частота и масса капель определяют скорость эрозии любого композита. Увеличение прочности и стойкости к ударным нагрузкам слоистого пластика достигается изменением его состава, но в большинстве случаев его покрывают стойким к дождевой эрозии защитным слоем, способным рассеивать часто повторяемые и дискретные дозы энергии, не вызывая заметного повреждения субстрата. Сказанное в основном касается конструкций летательных аппаратов, таких как обтекатели радиолокационной антенны, подвергающиеся воздействию факторов полета с высокими скоростями, или передние кромки быстро вращающихся лопастей, например на вертолете. Для определения относительной стойкости различных покрытий [19] могут быть проведены их эмпирические исследования на испытательном оборудовании с органами управления. Система может быть также смоделирована математически, а затем проверена эмпирическими испытаниями [20]. Много информации можно почерпнуть также из литературы, где показано влияние варьирования компонентов, входящих в композиционный материал [211.  [c.293]


Из формулы (22) следует, что большое влияние на рассеивающую способность оказывают такие факторы, как напряжение и концентрация грунтовки. В заданном интервале варьирования факторов максимальное изменение рассеивающей способности не превышает 30—40%, однако влияние различных факторов на рассеивающую способность определяется без учета защитных и декоративных свойств электроосажденных покрытий, что является недостатком расчета.  [c.31]

Механическая прочность — способность тел противостоять разрушению под действием механических сил. Разрушение лакокрасочных покрытий происходит не только под действием механической нагрузки, но также под влиянием солнечной радиации, температуры, влажности и других агрессивных сред, приводящих к потере защитных свойств покрытий [6 7]. Однако, несмотря на существование различных факторов разрушения, доминирующим являются механические напряжения, как внешние, так и внутренние, которые в силу структурной неоднородности полимера неравномерно распределяются по межструктурным связям и в местах локализации вызывают нарушение целостности полимерного тела.  [c.101]

Выбор материала покрытия и соответствующего способа его нанесения определяют различными факторами, прежде всего эксплуатационными условиями, габаритахми и конфигурацией аппарата. Конструкционные особенности аппарата оказывают порой решающее влияние на выбор способа нанесения защитного покрытия. Знание хотя бы общих сведений о существующих методах нанесения покрытий из разнообразных материалов важно как для конструктора, так и для лиц, занимающихся. монтажом и эксплуатацией химических аппаратов, поскольку в подавляющем большинстве случаев вопросы противокоррозионной защиты металлического оборудования приходится решать на монтажной площадке или в процессе ремонтно-восстановительных работ. Это объясняется тем, что заводы химического машиностроения, как правило, не выпускают химические аппараты с защитными полимерными покрытиями.  [c.235]

Необходимо отметить, что указанные факторы — амплитуда деформации, длительность и максимальная температура цикла — являются основными, но не единственными параметрами, определяющими вид разрушения. Не изменяя в целом вид диаграммы, границы областей, характеризующих разрушения различного вида, можно сдвигать в ту или иную сторону для учета воздействия технологических и экшлуатационных факторов (например, шособа и режима выплавки металла, влияния среды, защитных покрытий). Так, вакуумная выплавка никелевого сплава существенно повышает прочность границ зерен, вследствие чего при одних и тех же условиях нагружения смещается область величин сре, фо Ф 1 в которой разрушение происходит по границам зерен. Наоборот, при активном повреждении границ зерен, например при эксплуатации в газовых средах или при склонности материала к межкристаллитной коррозии, разрушение от термической усталости почти всегда начинается по границам зерен еледовательно, в этом случае уменьшаются области Л и 5 на рис. 58 (по границам зерен развивалось разрушение при нагружении стали 12Х18Н9Т при 750° С тв=1,5  [c.102]

Коррозия луженых консервных банок — сложный процесс, опеределяемый многими факторами, важность которых зависит от условий. Так, например, соединения серы реагируют с оловом и создают пленки, препятствующие проявлению защитного действия полуды. Важным моментом является образование железооловян ного соединения FeSng в процессе оплавления электролитически полученного оловянного покрытия либо при горячем лужении. Это соединение инертно в условиях, существующих внутри луженной консервной банки. Ионы двухвалентного олова в растворе замедляют растворение стали, воздействуя на эффективность анодного ингибирования. Имеются и другие важные факторы. Их совместное влияние оценивается различными испытаниями луженых консервных банок, связывающими- длительность хранения с характером содержимого.  [c.152]

При термоциклическом нагружении существуют три области, характеризующие разрушение различного характера область усталостного разрушения, область смешанного и область статического разрушения [28]. Конкретное соотношение величин Де, Гщах, обусловливает тот или иной вид разрушения. Аналогичные данные получены и по другим сплавам. Они свидетельствуют о необходимости учета для характеристики типа разрушения всех факторов, определяющих долговечность при термической усталости. Неучет одного из них может привести к неправильным ёыводам о причинах разрушения. Необходимо отметить, что указанные факторы—амплитуда деформации, длительность и температура цикла являются основными, но не единственными, определяющими вид разрушения. Не изменяя в целом общих закономерностей, большое значение имеют технологические и эксплуатационные факторы, например, способ и режим выплавки металла, влияние среды, защитные покрытия. Так, вакуумная выплавка никелевого сплава существенно повышает прочность границ зерен, вследствие чего в одних и тех же условиях нагружения смещается область значений величин Де, Тт х, in, в которой разрушение происходит по границам зерен. Наоборот, при активном повреждении границ зерен, например при эксплуатации в газовых средах или в случае склонности материала к межкристаллитной коррозии, разрушение от термической усталости почти всегда начинается по границам зерен.  [c.176]

В книге изложены современные методы защиты от коррозии деталей, узлов и оборудования в период изготовления, межоперационного хранения, сборки и испытаний, длительного хранения и монтажа. Рассмотрено влияние атмосферы и технологических факторов при изготовлении, вызывающих коррозию, а также рекомендованы мероприятия по защите от кор-)озии, в том числе при проектировании оборудования, 1риведены технологические процессы нанесения защитных покрытий и консервации. Даны результаты использования различных способов и средств защиты оборудования от коррозии.  [c.2]


Все это, а также отзывы по второму изданию книги, поступившие в связи с широким техническим и научным обсуждением этого учебного пособия, в которых были высказаны пожелания о введении некоторых изменений и необходимости дополнения книги новыми главами, побудило автора переделать некоторые главы книги, сократить менее ценный материал и написать новые главы. Книга дополнена следующими главами глава VI Влияние конструктивных особенностей элементов аппаратов и сооружений на коррозионный процесс глава VII Разрушение металлов при совместном действии коррозионных и механических факторов глава XV Коррозия новых конструкционных металлов и сплавов . Вместо одной главы Пластические массы , помещенной во втором издании, дано пять глав по высокополимерным материалам. Коренной переработке подверглись главы II, III и IV по кинетике процессов электрохимической коррозии и пассивности металлов и глава IX по химической коррозии. Глава XXXI по углеграфитовым и древесным материалам значительно расширена в первой части, учитывая большое значение этих материалов в химическом машиностроении, и сокращена во второй части. Сокращены также глава I, поскольку вопросы строения металлов и растворов подробно рассматриваются в различных учебниках, и глава XVI Металлические защитные покрытия и химические методы обработки , поскольку эти способы защиты в химическом машиностроении неэффективны.  [c.4]


Смотреть страницы где упоминается термин Покрытия защитные влияние различных факторов : [c.217]   
Коррозия и основы гальваностегии Издание 2 (1987) -- [ c.117 , c.124 ]



ПОИСК



Влияние Покрытия защитные

Покрытие защитное



© 2025 Mash-xxl.info Реклама на сайте