Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термометрия активная

Термометрия активная оптическая - Методы 93, 94  [c.460]

Температура зерновой массы с самого начала процесса сушки повышается и становится выше температуры мокрого термометра. Обычно в шахтных сушилках зерно находится в плотном, малоподвижном слое. Скорость воздуха в слое невелика (0,2—0,3 м/сек), а скорость движения зерна примерно в 100 раз меньше скорости воздуха в связи с этим активная поверхность зернового слоя значительно меньше суммарной  [c.59]


Магнитоэлектрические логометры предназначаются для измерения и записи температуры в комплекте с термометрами сопротивления, а также для измерения других величин, которые могут быть преобразованы в значения активного сопротивления. Шкала прибора в градусах температуры может быть использована также только для термометров определенной градуировки, при определенном значении сопротивления соединительных проводов. Градуировка  [c.221]

Автоматические мосты предназначаются для измерения и записи температуры в комплекте с термометрами сопротивления а также для измерения других величин значения которых могут быть преобразова ны в значения активного сопротивления  [c.224]

Значения термодинамических температур вблизи абсолютного нуля получают с помощью магнитной термометрии. Для из.мерения температур магнитными методами используют температурные зависимости магнитных свойств соответствующим образом подобранных магнитных солей. Обычно используется температурная зависимость магнитной восприимчивости (активной и реактивной составляющих), а также индуктивности и остаточного магнитного момента соли.  [c.22]

В книге обсуждаются физические принципы, измерительные характеристики, особенности и ограничения различных методов активной термометрии твердого тела. Термочувствительным элементом в активной термометрии является сам исследуемый объект, а считывание информации о температуре объекта проводится с помощью зондирующего светового пучка (обычно лазерного). Появление новых методов бесконтактной термометрии существенно расширило возможности для исследований в области новых технологий (в частности, процессов при взаимодействии газоразрядной плазмы и пучков заряженных частиц с поверхностью). Исследовательские группы, в которых были разработаны новые методы, быстро получили информационные преимущества при изучении процессов на границе раздела плазма-поверхность, ранее недоступных для диагностики. Лазерная термометрия впервые сделала практически осуществимыми температурный мониторинг и контроль в вакуумных процессах микротехнологии (осаждение тонких пленок, травление микроструктур, ионная имплантация полупроводников и т. д.). К настоящему времени предложены и развиваются более десяти методов лазерной термометрии (ЛТ), хотя в исследованиях и технологическом контроле активно применяется пова лишь 4-5 методов.  [c.5]


При исследованиях тепловых процессов малой длительности на поверхности твердого тела (например, при наносекундном лазерном отжиге полупроводниковых кристаллов после легирования примесями) для термометрии также сразу стали разрабатываться активные методы, основанные на отражении или рассеянии лазерного  [c.10]

Принципы активной оптической термометрии 19  [c.19]

Разнообразие схем считывания в активной оптической термометрии позволяет создавать как широкодиапазонные методы с невысокой дифференциальной чувствительностью, так и высокочувствительные методы с узким диапазоном измеряемых температур, а иногда даже объединять в одном методе широту температурного диапазона и высокую чувствительность. Фактически новые методы создаются для решения конкретных задач и основываются на свойствах материалов, применяемых в эксперименте или технологическом процессе. В следующих главах будут рассмотрены методы термометрии, в которых измеряют  [c.21]

Для устранения этих зависимостей и повышения надежности термометрии при наличии электромагнитных помех необходимы методы, в которых сам исследуемый объект играет роль термочувствительного элемента, а его показания непосредственно считываются зондирующим световым пучком. В этом случае полностью устраняется проблема ненадежности теплового контакта между чувствительным элементом и объектом, поскольку наличие контакта оптического пучка с поверхностью определяется визуально, и его надежность не уменьшается со временем из-за вибраций, деформаций, температурных воздействий или химической активности среды. Световой пучок не подвержен влиянию электрических наводок и имеет ряд характерных признаков (длина волны, поляризация, направление распространения, модуляция интенсивности и т. д.), позволяющих достоверно различать его на фоне оптических помех. Ряд таких методов разработан применительно к исследованиям в газоразрядной плазме и контролю процессов осаждения пленок и травления микроструктур в технологии интегральных схем  [c.22]

При проведении активной термометрии наиболее часто применяются лазеры. Причина состоит в том, что для лазеров характерны высокая монохроматичность, очень малая расходимость (порядка 1 мрад) и высокая яркость излучения (измеряемая в Вт/(см мкм ср)), на порядки величины превосходящая яркость ламп накаливания и газоразрядных ламп. Эти характеристики лазера позволяют регистрировать зондирующее излучение на фоне любых помех. Существуют лазеры с длиной волны, перестраиваемой в широком диапазоне спектра (от инфракрасного до ультрафиолетового). Широко распространены компактные полупроводниковые лазеры видимого и инфракрасного диапазонов.  [c.23]

Для проведения активной термометрии твердых тел необходимы данные по температурным зависимостям оптических параметров, на основе которых созданы (или могут быть созданы в дальнейшем) измерительные методы. Методы ЛТ, разработанные и применяемые в на-стояш,ее время, основаны на наиболее простых и доступных оптических схемах. Параметрами, зависяш,ими от температуры и наиболее часто используемыми для ее измерения, являются  [c.72]

В настоящее время метод ЛИТ применяется чаще всего для термометрии кристаллов и стекол, помещенных в газоразрядную плазму низкого давления, включая и химически активную плазму фтор- и хлорсодержащих газов (СР4, 8Рб, СЬ и т.д.). Исследовательская часть проблемы, включающая изучение кинетики и механизмов теплообмена неравновесной плазмы с поверхностью, экспериментальную оценку различных способов теплоотвода от кристалла, в основном успешно решается. Однако проблемы технологического контроля и управления температурой подложек в плазме решить пока не удается.  [c.176]

В течение последних десятилетий в оптике и спектроскопии существовали отчетливые возможности создания новых методов термометрии, основанных на активном зондировании твердых тел световым пучком для измерения температурно-зависимых параметров, например, ширины запрещенной зоны кристалла, действительной и мнимой частей комплексного показателя преломления, времени затухания флуоресценции, отношения интенсивностей стоксовой и антистоксовой компонент рассеянного излучения.  [c.195]

На стыке возможностей оптики и спектроскопии твердого тела и потребностей новых технологий возникло новое направление — лазерная термометрия твердых тел. Трудности и ограничения, присущие традиционной термометрии, были преодолены путем создания сразу нескольких новых методов, положивших начало активной термометрии твердых тел, которая проводится путем зондирования изучаемого объекта внешним оптическим (обычно лазерным) пучком. Закончившийся первый этап развития ЛТ включал разработку новых физических принципов, экспериментальную проверку новых методов термометрии, изучение их особенностей, предварительные оценки измерительных характеристик. Некоторые из методов лазерной термометрии широко применяются в настоящее время в исследованиях и технологическом контроле и характеризуются низкой трудоемкостью и высокой помехозащищенностью, высокой чувствительностью и относительной  [c.195]


Таблица 8.4. Источники зондирующего излучения, наиболее часто применяемые в активной термометрии твердых тел Таблица 8.4. Источники зондирующего излучения, наиболее часто применяемые в активной термометрии твердых тел
Полупроводниковые термометры сопротивления под названием термисторов широко применяют в технике. С их помощью контролируют температуру в большом числе точек, причем показания ее могут быть получены на приборах, установленных в одном пункте. При таком контроле температур в помещениях с помощью термисторов можно поддерживать температуру на желаемом уровне, включая и выключая нагревательные приборы, когда заданный уровень температуры отклоняется от нормы. Работают они при температурах до 300° С (573° К). Термисторы могут выполнять функции ограничителя времени. Для этого последовательно с полупроводниковым термосопротивлением включается то или иное активное электросопротивление. В результате в сети получается возрастающий со временем ток, так как ток разогревает полупроводник и повышает его электропроводность, следовательно, повышается и величина тока в цепи. По мере разогрева полупроводника сопротивление падает, а ток повышается еще в большей степени. Параллельно с ростом температуры увеличиваются и потери тепла в окружающую среду до тех пор, пока они не сравняются с теплотой, выделяемой током тогда будет достигнута равновесная температура, которую полупроводник и будет сохранять, пока к нему приложена данная разность потенциалов.  [c.155]

Для градуировки платиновых термометров сопротивления по МШТ определены четыре реперные точки фазовых переходов, одна из которых является точкой затвердевания, а три другие — точками кипения. При реализации этих реперных точек лучше стремиться к созданию новой методики, улучшающей воспроизводимость точек, чем следовать старым рекомендованным процедурам, установленным практикой прежних лет. В Национальном бюро стандартов США вместо точки плавления льда применяется только тройная точка воды, реализованная в герметичной ампуле. Точки кипения серы и воды реализуются при активном кипении в кипятильниках, соединенных с резервуаром, содержащим гелий с регулируемым давлением. Давление гелия регулируется вручную с помощью точного манометра так, чтобы на уровне чувствительных элементов термометра сопротивления оно было равно 1 атм. Точка кипения кислорода реализуется в аппаратуре, которая содержит жидкий кислород и его пары при атмосферном давлении. Кислород отделяется от гелия, содержащегося в резервуаре, тонкой металлической мембраной, которая позволяет контролировать равенство давлений кислорода и гелия.  [c.119]

Электротермометр работает на термовибрационном принципе. Устройство его следующее (рис. 185). В отличие от аварийного автоматического включателя, в датчике термометра активный металл А расположен со стороны контакта, а биметаллическая пластинка снабжена нагревательной обмоткой 2. В датчике один контакт соединен с капсюлем, т. е. с массой , а другой — с биметаллической пластинкой, следовательно, с нагревательной обмоткой 2. Биметаллическая пластинка 3 закреплена одним концом в капсюле и соединена с зажимом 4, а другой конец пластинки  [c.317]

Точность, с которой может быть использован пирометр с ис-чезаюшей нитью для измерения температуры, вполне достаточна для большинства практических применений. Во всяком случае, ограничивающим фактором чаще служит неопределенность в излучательной способности объекта, температура которого подлежит измерению. Однако, несмотря на удобство, точность и надежность, оптический пирометр с исчезающей нитью имеет один существенный недостаток его использование требует активного участия квалифицированного наблюдателя. Его нельзя использовать в тех приложениях, которые нуждаются в непрерывных или быстрых измерениях, а также измерениях в недоступных или опасных ситуациях. По этой причине с самого начала некоторые оптические термометры объединялись с тепловыми, термоэлектрическими, фоторезисторными и фо-тоэмиссионными детекторами. Среди них наиболее удачными оказались оптические термометры с кремниевыми фотоэлементами. Высокая прочность и долговременная воспроизводимость  [c.310]

Для измерения температуры масла и воды на станциях систем жидкой смазки, расположенных в ц, с. с., весьма удобны термометры сопротивления. Термометр сопротивления представляет собой чувствительный элемент, состоящий из тонкой медной проволоки, намотанной на каркас и заключенной вместе с ним в защитную оболочку. Принцип действия электрического термометра сопротивления основан на изменении величины электрического сопротивления проводника, имеющем место при изменении температуры среды, в которой помещен этот проводник. Широкое применение находят медные термометры ЭТ-Х1 (фиг. 37), предназначенные для измерения температуры от—50 до +100°С в трубопроводах и резервуарах, находящихся под давлением до 5 кПсм" . На фиг. 37 буквой а обозначена активная часть термометра. Глубина погружения термометра равна 100 мм. Величина электрического сопротивления измеряется логометром, стрелка которого показывает на шкале измеряемую температуру.  [c.74]

Открытые капельные градирни. Расчет открытых капельных градирен может производится по графику фиг. 3-9, построенному Л. Д. Берманом для следующих условий число ярусов решетника п = 10 высота оросителя Я=9,1 м ширина активной зоны оросителя (без учета жалюзи) B — Z,l л угол наклона ш,итов жалюзи 6 = 45°С температура наружного воздуха по влажному термометру т1= 20° С, скорость ветра да—1,5 Mj eK. Для дру их т, ш и/г вносятся поправки к плотности дождя с помощью коэффициентов, определяемых по вспомогательным графикам фиг.  [c.261]


Обладает ср. хим. активностью, в соединениях проявляет степени окисления —3, -ЬЗ и -f-5. М.— сильный яд, его мн. соединения также сильно ядовиты. М. вводят в состав нек-рых баббитов и типографских сплавов. М. входит в состав спец, стёкол, напр. иенского стекла для термометров. Соединения М. с селеном (AsjSeg),  [c.223]

I лютного значения температуры была 0,1°С. Кроме обычных измерений, необходимых Щ)И проведении этих опытов.использовался специальный миниатюрный датчик для фиксации возвратных течений. Конструкция датчика была следующей. Вокруг на1Т1еваемой электротоком золоченой вольфрамовой нити (термоанемометр постоянного соцротивления),параллельно ей, в радиусе 0,25 мм,в точках 0°,90°,180° располагались термометры сопротивления, выполненные из такой же проволоки. Активная рабочая длина проволочек 2 мм.диаметр 0,008 мм.Остальная часть проволоки (26мм) электролитически покрывалась тонким слоем меди. В зависимости от направления потока след от на -реваемой нити регистрировался каким-либо  [c.51]

Парк цифровых управляющих машин непрерывно пополняется новыми моделями. Так, промышленностью изготовляется автоматическая машина управления и регулирования типа АМУР , предназначенная для централизованного контроля и регулирования температуры 40, 50, 60, 70 или 80 точек. Машина работает с термометрами сопротивления, но допускает применение любых других датчиков, преобразующих изменение измеряемого параметра в изменение активного сопротивления.  [c.64]

Книга адресуется специалистам в области термометрии, теплофизики, физики плазмы и газового разряда, плазмохимии, гетерогенного катализа, а также физикам и инженерам, работающим в области микро-и нанотехнологии, плазменных и пучковых технологий, связанных с различными воздействиями на поверхность твердых тел. Основная цель автора — пор<азать, на какой теоретической и экспериментальной основе развиваются новые методы, каковы предельные возможности, перспективы применения активной термометрии, а также нерешенные проблемы, препятствующие широкому применению ЛТ Овладение методами лазерной термометрии необходимо тем, кто создает и исследует новые материалы и технологические процессы, и при этом испытывает  [c.5]

Ряд методов для измерения температуры твердого тела, разработанных в последние 10-15 лет, объединяет обш,ий признак во всех них применяется зондируюш,ий световой пучок, а термочувствительным элементом является сам исследуемый объект, при этом транспортировка света может осуш,ествляться как в свободном пространстве, так и с помош,ью оптического волокна. Появление активной бесконтактной термометрии твердого тела является естественным этапом после длительного развития пассивной бесконтактной термометрии по тепловому излучению объекта. Создание новых методов происходило, как далее будет показано, с целью преодолеть затруднения, с которыми  [c.9]

В других областях, где отсутствовали возможности применить термопары и радиационные пирометры, разработка и применение лазерных методов проводилась давно. При исследованиях горячей плазмы активные бесконтактные методы измерения температуры также начали применяться на 20-25 лет раньше [1.10], поскольку в этой области не было никакой возможности адаптировать традиционные методы из-за высокой тепловой нагрузки на термозонд, влияния распыляемого зонда на параметры плазмы, а также малой оптической толщины плазмы (при этом спектр излучения существенно отличается от равновесного). Десятки лет проводится термометрия газовых и плазменных потоков с высоким временным разрешением (нано- и микросекундный диапазоны) методами лазерной интерферометрии, спектроскопии когерентного антистоксова рассеяния света (КАРС), лазерно-индуцированной флуоресценции, поскольку традиционные методы не обеспечивают такого быстродействия, какое достигается с помощью импульсных лазеров  [c.10]

В 80-е годы получил распространение термолюминесцентный датчик с волоконно-оптической линией связи, в котором сигнал о температуре чувствительного элемента переносится к регистрируюш ему прибору световым потоком. Например, измеряется длительность послесвечения небольшого активного элемента из стекла с неодимом, возбуждаемого ИК излучением мош,ного светодиода [1.29]. В другом датчике измеряется отношение интенсивностей люминесценции двух участков спектра элемента из оксисульфида европия или лантана при его возбуждении ультрафиолетовым излучением [1.30]. В этих случаях влияние электрических помех полностью исключено, поскольку отсутствует гальваническая связь между чувствительным элементом и реги-стрируюш им прибором. С помош ью таких термометров были получены некоторые важные результаты, касаюш иеся термостабилизации подложек в плазмохимическом реакторе [1.31], теплопереноса на границе  [c.14]

При взаимодействии светового пучка с твердым телом изменяются параметры пучка (интенсивность, поляризация, частотный и угловой спектры и т. д.). Степень изменения каждого из этих параметров определяется свойствами как твердого тела, так и пучка, а также условиями взаимодействия. Изменение температуры твердого тела сопровождается изменением амплитуды колебаний атомов в узлах решетки и, вследствие этого, изменением межатомных расстояний, что приводит к температурной зависимости оптических параметров. Известны температурные зависимости ширины запреш енной зоны полупроводниковых и диэлектрических кристаллов, действительной и мнимой частей комплексного показателя преломления, концентрации и подвижности свободных носителей заряда, плотности фононов для каждой разрешенной моды колебаний решетки [1.41, 1.42]. Выбор характеристик пучка, условий взаимодействия пучка с объектом, а также условий регистрации сигнала позволяет проводить измерение многих температурно-зависимых параметров твердого тела. Оптическая термометрия включает последовательность преобразований в соответствии с температурой устанавливается значение физического параметра, проводится его измерение оптическим методом, затем на основе известных соотношений между температурой, физическим параметром и регистрируемым оптическим сигналом определяется температура. Эта последовательность предполагает использование внешнего зондируюш его излучения, т. е. диагностика является активной.  [c.19]

При изменении температуры пластинки происходит изменение сразу нескольких параметров кристалла, от которых зависят коэффициенты Д и Т. Зависимость, вносяш,ую основной вклад в температурное изменение регистрируемого сигнала, назовем управляюш,ей функцией. Далее будет показано, что среди многих управляющих функций наиболее эффективны ехр(—а/г) и со8 2пкН). Первая из этих функций лежит в основе широко распространенного метода термометрии полупроводников по температурному сдвигу края межзонных оптических переходов [1.40]. При выполнении условия 0,2 аН 2 этот сдвиг обеспечивает высокую температурную чувствительность при регистрации отраженного или проходящего излучения. При аН <С 0,1 и аН > 3 чувствительность мала. На гармонической управляющей функции основан не менее распространенный метод лазерной интерференционной термометрии полупроводников и диэлектриков [1.43]. Здесь чувствительность также имеет максимум при определенной длине волны и падает как в длинноволновой, так и в коротковолновой областях спектра. Обе эти управляющие функции позволяют реализовать усиление изменений при малом относительном изменении температуры в и управляющего параметра а в) или п в) относительное изменение регистрируемой интенсивности света оказывается не малым. Двухступенчатое преобразование изменений температуры в регистрируемый сигнал (в данном случае сигналом является изменение интенсивности света после взаимодействия с пластинкой) характерно для активной оптической термометрии и, по-видимому, не характерно для традиционных методов (это проявляется в том, что отсутствует возможность усиливать или ослаблять коэффициент преобразования К = Д2/Д0 путем выбора условий считывания сигнала).  [c.21]


Некоторые материалы, широко применяемые в микротехнологии, могут иметь разные концентрации и разные типы примесей, вводимых для целенаправленного изменения физических свойств. Например, в полупроводниковые монокристаллы (Si, GaAs и т.д.) примеси вводят для изменения электропроводности. Для проведения ЛТ кристаллов с разной концентрацией и разными типами электрически активных примесей необходимо знать, как влияет конкретная примесь на температурную зависимость регистрируемого сигнала, на основе которого определяется температура. Величины погрешностей, вносимых в результат измерений вследствие того, что при термометрии используются данные по оптическим свойствам кристалла, не идентичного с исследуемым по составу примесей, чаш е всего не определены. Для исключения таких погрешностей необходимы исследования температурных зависимостей оптических свойств кристаллов разного примесного состава.  [c.92]

Методы лазерной термометрии поверхности можно применять в широком диапазоне температур, практически совпадаюш,ем с диапазоном суш,ествования твердой фазы. Методы, основанные на отражении света, активно используются для термометрии поверхности металлов и полупроводников. По отражению света проводится микротермография элементов интегральных схем (транзисторов, металлических соединений) с пространственным разрешением порядка длины волны зондируюш,его света и временным разрешением порядка наносекунды. Метод отражательной термометрии ближнего поля позволяет улучшить пространственное разрешение примерно на порядок. Для получения надежных результатов необходимо перед проведением измерений температуры выполнить дополнительные исследования по построению калибровочных кривых, т. е. температурных зависимостей регистрируемого сигнала.  [c.108]

При использовании объектива (ЮОх) проведено изучение локальной температуры в действующем полупроводниковом приборе (МОП-структуре) [7.10]. При КР-термометрии на длинах волн 514 и 457,9 нм достигнуто субмикронное пространственное разрешение. Методом КР проведено также измерение температуры полупроводникового (InGaAsP) лазера во время его работы и действующего полевого транзистора при расстоянии между стоком и истоком 5 мкм (транзистор изготовлен из полупроводниковых твердых растворов А3В5 на подложке GaAs) [7.16]. Температура лазера, излучающего на длине волны 1,48 нм, увеличивается пропорционально току накачки, и при токе 400 мА и излучаемой мощности 140 мВт температура излучающей области выше температуры окружающей среды на 35 °С. При работе полевого транзистора (ток 40 мА) наибольшее увеличение температуры, измеренной с пространственным разрешением 0,4 мкм, происходит вблизи стока [Ав 60-Ь80 °С), тогда как вблизи истока нагрев меньше [Ав 35-Ь45 °С). Погрешность термометрии оценивается авторами величиной 5 °С. Температуру активного слоя в светоизлучающем диоде на основе Si измерили по сдвигу частоты поперечного оптического фонона [7.17]. Показано, что при плотности тока накачки 200 А/см температура достигает 350 °С.  [c.186]

От температуры зависит также химическая активность вещества, его испаряемость, растворимость, во многих случаях — его физическая структура. Это o6 T0Hteinb T80, естественно, приводит к влиянию температуры на характер протекания многих технологических процессов, к необходимости контроля температуры во многих отраслях производства. Влияние температуры на физические свойства тел используется также для практических измерений температуры. Например, действие ртутно-стеклянного термометра основано на тепловом расшире НИН ртути (гл. V), действие термопары — на зависимости от температуры контактной разности потенциалов между двумя разнородными проводниками (гл. VII) и т. д.  [c.26]

Другая рамка подключена к источнику питания параллельно с мостом, и сила тока в ней практически постоянн Для ограничения силы тока в рамке К у, служат - шунт а —сопротивление, включенное последовательно с рамкой. При изменении сопротивления термометра изменяется сила тока, проходящего через ралтку р, включенную в диагональ. моста. Изменение силы тока в рамке заставляет ее поворачиваться и поворачивать одновременно жестко связанную с ней рамку Л г. При перемещении рамки/с,, вокруг сильно срезанной части сердечника изменяется ее активная площадь и начинает нарастать момент вращения, противодействующий мо-  [c.98]

Галилей (Galilei) Галилео (1564-1642) — выдающийся итальянский физик и астроном, один из основа телей точного естествознания. Основой познания считал опыт. Оказал значительное влияние на развитие науч ной мысли. Заложил основы современной механики выдвинул идею об относительности движения, установи, законы инерции, свободного падения, сложения движений, первым исследовал прочность балок открыл изо хронность колебаний маятника. Построил (1600 г.) телескоп с 32-кратным увеличением и открыл горы на Луне 4 спутника Юпитера, фазы у Венеры, пятна на Солнце. Создал (1614 г.) микроскоп, изобрел (1597 г.) первы термометр. Работы по гидростатике и прочности материалов. Активно защищал гелиоцентрическую систему за что был подвергнут суду инквизиции (1633 г.) и объявлен узником инквизиции . До своей болезни (в 1637 г окончательно потерял зрение) завершил труд Беседы и математические доказательства, касающиеся двух но вых отраслей иауки , который подводил итог его исследований.  [c.16]

Контроль ванн обезжиривания. Растворы для обезжиривания содержат 50—100 Г/л щелочей и очень небольшие количества эмульгаторов (поверхностно активных веществ). Содержание в растворе щелочей, как наиболее важной части, регулярно проверяют титрованием пробы раствора объемом 1 мл, разбавленной дистиллированной водой до объема 10 мл, при помощи децинормального раствора серной или соляной кислоты. В качестве индикатора при титровании применяют метилрот или метилоранж. Температуру раствора в ваннах обезжиривания и во всех последующих ваннах контролируют термометрами.  [c.461]

Типовые тепловые испытания макетного образца проектируемой высоковольтной электромашины не дали ясной картины нагрева статора машины. Температура обмотки статора, измеренная предназначенным для 9Т0Й цели стандартным термометром сопротивления, оказалась ниже температуры стали статора, измеренной аналогичным термометром сопротивления. Средняя температура обмотки статора, измеренная методом сопротивления, оказалась значительно ниже вышеназванной температуры, и т. д. Предстояло разобраться в таких на шервый взгляд противоестественных явлениях. После дополнительных комбинированных испытаний, включаюших метод текущей компенсации, удалось весьма детально представить распределение температуры в активных частях статора.  [c.86]


Смотреть страницы где упоминается термин Термометрия активная : [c.222]    [c.366]    [c.176]    [c.51]    [c.10]    [c.193]    [c.194]   
Лазерная термометрия твердых тел (2001) -- [ c.10 , c.19 , c.199 ]



ПОИСК



Принципы активной оптической термометрии

Термометр

Термометрия

Термометрия активная оптическая - Методы



© 2025 Mash-xxl.info Реклама на сайте