Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термометрия активная оптическая - Методы

Термометрия активная оптическая - Методы 93, 94  [c.460]

Разнообразие схем считывания в активной оптической термометрии позволяет создавать как широкодиапазонные методы с невысокой дифференциальной чувствительностью, так и высокочувствительные методы с узким диапазоном измеряемых температур, а иногда даже объединять в одном методе широту температурного диапазона и высокую чувствительность. Фактически новые методы создаются для решения конкретных задач и основываются на свойствах материалов, применяемых в эксперименте или технологическом процессе. В следующих главах будут рассмотрены методы термометрии, в которых измеряют  [c.21]


МЕТОДЫ АКТИВНОЙ ОПТИЧЕСКОЙ ТЕРМОМЕТРИИ (АОТ)  [c.93]

Для устранения этих зависимостей и повышения надежности термометрии при наличии электромагнитных помех необходимы методы, в которых сам исследуемый объект играет роль термочувствительного элемента, а его показания непосредственно считываются зондирующим световым пучком. В этом случае полностью устраняется проблема ненадежности теплового контакта между чувствительным элементом и объектом, поскольку наличие контакта оптического пучка с поверхностью определяется визуально, и его надежность не уменьшается со временем из-за вибраций, деформаций, температурных воздействий или химической активности среды. Световой пучок не подвержен влиянию электрических наводок и имеет ряд характерных признаков (длина волны, поляризация, направление распространения, модуляция интенсивности и т. д.), позволяющих достоверно различать его на фоне оптических помех. Ряд таких методов разработан применительно к исследованиям в газоразрядной плазме и контролю процессов осаждения пленок и травления микроструктур в технологии интегральных схем  [c.22]

Для проведения активной термометрии твердых тел необходимы данные по температурным зависимостям оптических параметров, на основе которых созданы (или могут быть созданы в дальнейшем) измерительные методы. Методы ЛТ, разработанные и применяемые в на-стояш,ее время, основаны на наиболее простых и доступных оптических схемах. Параметрами, зависяш,ими от температуры и наиболее часто используемыми для ее измерения, являются  [c.72]

На стыке возможностей оптики и спектроскопии твердого тела и потребностей новых технологий возникло новое направление — лазерная термометрия твердых тел. Трудности и ограничения, присущие традиционной термометрии, были преодолены путем создания сразу нескольких новых методов, положивших начало активной термометрии твердых тел, которая проводится путем зондирования изучаемого объекта внешним оптическим (обычно лазерным) пучком. Закончившийся первый этап развития ЛТ включал разработку новых физических принципов, экспериментальную проверку новых методов термометрии, изучение их особенностей, предварительные оценки измерительных характеристик. Некоторые из методов лазерной термометрии широко применяются в настоящее время в исследованиях и технологическом контроле и характеризуются низкой трудоемкостью и высокой помехозащищенностью, высокой чувствительностью и относительной  [c.195]


В других областях, где отсутствовали возможности применить термопары и радиационные пирометры, разработка и применение лазерных методов проводилась давно. При исследованиях горячей плазмы активные бесконтактные методы измерения температуры также начали применяться на 20-25 лет раньше [1.10], поскольку в этой области не было никакой возможности адаптировать традиционные методы из-за высокой тепловой нагрузки на термозонд, влияния распыляемого зонда на параметры плазмы, а также малой оптической толщины плазмы (при этом спектр излучения существенно отличается от равновесного). Десятки лет проводится термометрия газовых и плазменных потоков с высоким временным разрешением (нано- и микросекундный диапазоны) методами лазерной интерферометрии, спектроскопии когерентного антистоксова рассеяния света (КАРС), лазерно-индуцированной флуоресценции, поскольку традиционные методы не обеспечивают такого быстродействия, какое достигается с помощью импульсных лазеров  [c.10]

При взаимодействии светового пучка с твердым телом изменяются параметры пучка (интенсивность, поляризация, частотный и угловой спектры и т. д.). Степень изменения каждого из этих параметров определяется свойствами как твердого тела, так и пучка, а также условиями взаимодействия. Изменение температуры твердого тела сопровождается изменением амплитуды колебаний атомов в узлах решетки и, вследствие этого, изменением межатомных расстояний, что приводит к температурной зависимости оптических параметров. Известны температурные зависимости ширины запреш енной зоны полупроводниковых и диэлектрических кристаллов, действительной и мнимой частей комплексного показателя преломления, концентрации и подвижности свободных носителей заряда, плотности фононов для каждой разрешенной моды колебаний решетки [1.41, 1.42]. Выбор характеристик пучка, условий взаимодействия пучка с объектом, а также условий регистрации сигнала позволяет проводить измерение многих температурно-зависимых параметров твердого тела. Оптическая термометрия включает последовательность преобразований в соответствии с температурой устанавливается значение физического параметра, проводится его измерение оптическим методом, затем на основе известных соотношений между температурой, физическим параметром и регистрируемым оптическим сигналом определяется температура. Эта последовательность предполагает использование внешнего зондируюш его излучения, т. е. диагностика является активной.  [c.19]

При изменении температуры пластинки происходит изменение сразу нескольких параметров кристалла, от которых зависят коэффициенты Д и Т. Зависимость, вносяш,ую основной вклад в температурное изменение регистрируемого сигнала, назовем управляюш,ей функцией. Далее будет показано, что среди многих управляющих функций наиболее эффективны ехр(—а/г) и со8 2пкН). Первая из этих функций лежит в основе широко распространенного метода термометрии полупроводников по температурному сдвигу края межзонных оптических переходов [1.40]. При выполнении условия 0,2 аН 2 этот сдвиг обеспечивает высокую температурную чувствительность при регистрации отраженного или проходящего излучения. При аН <С 0,1 и аН > 3 чувствительность мала. На гармонической управляющей функции основан не менее распространенный метод лазерной интерференционной термометрии полупроводников и диэлектриков [1.43]. Здесь чувствительность также имеет максимум при определенной длине волны и падает как в длинноволновой, так и в коротковолновой областях спектра. Обе эти управляющие функции позволяют реализовать усиление изменений при малом относительном изменении температуры в и управляющего параметра а в) или п в) относительное изменение регистрируемой интенсивности света оказывается не малым. Двухступенчатое преобразование изменений температуры в регистрируемый сигнал (в данном случае сигналом является изменение интенсивности света после взаимодействия с пластинкой) характерно для активной оптической термометрии и, по-видимому, не характерно для традиционных методов (это проявляется в том, что отсутствует возможность усиливать или ослаблять коэффициент преобразования К = Д2/Д0 путем выбора условий считывания сигнала).  [c.21]


Ряд методов для измерения температуры твердого тела, разработанных в последние 10-15 лет, объединяет обш,ий признак во всех них применяется зондируюш,ий световой пучок, а термочувствительным элементом является сам исследуемый объект, при этом транспортировка света может осуш,ествляться как в свободном пространстве, так и с помош,ью оптического волокна. Появление активной бесконтактной термометрии твердого тела является естественным этапом после длительного развития пассивной бесконтактной термометрии по тепловому излучению объекта. Создание новых методов происходило, как далее будет показано, с целью преодолеть затруднения, с которыми  [c.9]

При использовании объектива (ЮОх) проведено изучение локальной температуры в действующем полупроводниковом приборе (МОП-структуре) [7.10]. При КР-термометрии на длинах волн 514 и 457,9 нм достигнуто субмикронное пространственное разрешение. Методом КР проведено также измерение температуры полупроводникового (InGaAsP) лазера во время его работы и действующего полевого транзистора при расстоянии между стоком и истоком 5 мкм (транзистор изготовлен из полупроводниковых твердых растворов А3В5 на подложке GaAs) [7.16]. Температура лазера, излучающего на длине волны 1,48 нм, увеличивается пропорционально току накачки, и при токе 400 мА и излучаемой мощности 140 мВт температура излучающей области выше температуры окружающей среды на 35 °С. При работе полевого транзистора (ток 40 мА) наибольшее увеличение температуры, измеренной с пространственным разрешением 0,4 мкм, происходит вблизи стока [Ав 60-Ь80 °С), тогда как вблизи истока нагрев меньше [Ав 35-Ь45 °С). Погрешность термометрии оценивается авторами величиной 5 °С. Температуру активного слоя в светоизлучающем диоде на основе Si измерили по сдвигу частоты поперечного оптического фонона [7.17]. Показано, что при плотности тока накачки 200 А/см температура достигает 350 °С.  [c.186]


Машиностроение энциклопедия ТомIII-7 Измерения контроль испытания и диагностика РазделIII Технология производства машин (2001) -- [ c.93 , c.94 ]



ПОИСК



Активный, метод

Оптическая активность

Термометр

Термометрия

Термометрия активная

Термометрия оптическая



© 2025 Mash-xxl.info Реклама на сайте