Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покрытия трещиностойкие

Как известно [2], один из основных показателей качества монолитных покрытий - трещиностойкость - характеризуется  [c.98]

Нанесение износостойких покрытий - наиболее распространенный и хорошо разработанный метод улучшения триботехнических свойств материалов. На его базе успешно реализованы различные технологические решения, позволяющие существенно улучшить качество поверхностного слоя и повысить прочность сцепления покрытия с подложкой. Конструирование многослойных покрытий является перспективным направлением поверхностной модификации, позволяющим плавно изменять свойство композиции по глубине и исключить отрицательное влияние хрупкого переходного слоя. Материал подслоя выбирают из соображений химической совместимости с основой, а также в целях исключения образующихся в граничной области хрупких интерметаллидных соединений. Идея создания многослойных покрытий реализована для повышения прочности поверхностных слоев, релаксации остаточных напряжений в модифицированных слоях, а также для увеличения вязкости и трещиностойкости.  [c.262]


В монографии на основе разработанной авторами классификации рассматриваются методики определения механических, физических и специальных свойств материалов с защитными и износостойкими покрытиями, нанесенными струйно-плазменным, детонационно-газовым и другими прогрессивными способами. Особое внимание уделяется исследованию малоизученных характеристик износостойкости, усталости и трещиностойкости композиции основной металл — покрытие .  [c.2]

Защитные и износостойкие покрытия обеспечивают возможность создания новых изделий-композиций, сочетающих высокую долговечность (износостойкость, специальные свойства) с достаточной надежностью (трещиностойкостью) повышают эксплуатационную стойкость деталей машин и инструментов по сравнению со стойкостью, достигаемой известными способами термической обработки позволяют восстанавливать изношенную поверхность и, следовательно, снижают потребности в запасных частях. С помощью покрытий получают особые свойства рабочей поверхности (например, жаростойкость, теплопроводность, заданный коэффициент трения) они дают экономию дефицитных и дорогостоящих металлов, использующихся для объемного легирования.  [c.3]

Весьма перспективными направлениями исследований в этой области следует считать изучение микромеханизмов разрушения и трещиностойкости вязких сталей рассмотрение субструктуры, и склонности к хрупкому разрушению сплавов развитие идеи комбинированного упрочнения деталей машин, сочетающего объемное повышение вязкости разрушения с нанесением износостойких покрытий изыскание путей создания оптимальных субструктур сплавов при комбинированном упрочнении, обеспечивающих их повышенную трещиностойкость.  [c.7]

В настоящее время, насколько нам известно, отсутствует классификация методик исследования покрытий и материалов с покрытиями. В отдельных монографиях на различном методическом уровне рассматриваются способы оценки свойств собственно покрытий (пористость, прочность соединения с основным металлом, защитные свойства, износостойкость и др.). Однако вопрос влияния покрытий на конструктивную прочность изделия в целом значительно сложнее, чем представляется некоторым авторам, и не может быть решен простым исследованием структуры и свойств только покрытий. По-видимому, композицию основной металл — покрытие следует рассматривать как единое целое. Очевидна необходимость комплексного, всестороннего изучения данной композиции с привлечением современных средств оценки конструктивной прочности, таких как статические, динамические и усталостные испытания, а также испытания на трещиностойкость. Методы испытаний материалов с покрытиями разработаны значительно меньше, чем способы оценки свойств собственно покрытий. В предлагаемой нами классификации методик исследования структуры и физико-механических свойств (рис. 2.1) выделено два крупных раздела испытание покрытий и испытание материалов с покрытиями.  [c.13]


Наиболее подробное изложение теоретических аспектов разрушения, подготовки образцов и оборудования, порядка проведения исследований дается здесь для методик, составляющих группы Усталостные испытания и Испытания на трещиностойкость . Это вызвано почти полным отсутствием в литературе данных об оценке надежности и долговечности на образцах с покрытиями. Следует отметить, что методы усталостных испытаний и на трещиностойкость металлических образцов регламентированы нормативными документами (ГОСТы и РД), поэтому нам представляется целесообразным использование этих документов при подготовке контрольных образцов. Кроме того, при изготовлении образцов с покрытием следует, вероятно, соблюдать принцип покрытие должно наноситься на выбранные поверхности металлических образцов, сделанных строго в соответствии с действующим стандартом. Это позволит однозначно оценить влияние покрытия на конструктивную прочность и обеспечить сопоставимость результатов.  [c.20]

Причиной понижения предела выносливости образцов с электролитическими железными покрытиями являются остаточные напряжения растяжения на границе основной металл — покрытие , достигающие 100—960 МПа. Эти напряжения оказывают отрицательное влияние на трещиностойкость гладких цилиндрических образцов при асимметричном цикле нагружения и обусловливают особый характер деформации и разрушения. Предел выносливости при этом может снижаться на 50% [55].  [c.31]

Создана установка и разработана методика для измерения длины трещины в процессе ее роста, основанные на пропускании через образец электрического тока и измерении электрического сопротивления и связанного с ним падения напряжения на участке образца с трещиной [65]. Это дает возможность контролировать трещину, зарождающуюся под износостойким покрытием, когда трещина не видна на поверхности. Общий вид установки для испытаний на усталостную трещиностойкость с непрерывной регистрацией длины усталостной трещины показан на фото 3.  [c.36]

Большие значения микропластической деформации при одинаковом значении приложенного напряжения к образцам с покрытиями свидетельствуют об увеличении подвижности дислокаций после нанесения покрытий. Благодаря облегчению передвижения дислокаций уменьшается вероятность опасных локальных напряжений, часто приводящих к образованию трещины, В случае возникновения трещины микропластическая деформация способствует затуплению ее кончика, снижая тем самым коэффициент концентрации напряжений, и, следовательно, повышает трещиностойкость.  [c.38]

ТРЕЩИНОСТОЙКОСТЬ (ВЯЗКОСТЬ РАЗРУШЕНИЯ) ОБЪЕМНО УПРОЧНЕННЫХ СПЛАВОВ С ПОКРЫТИЯМИ  [c.134]

В настоящее время весьма трудно оценить роль покрытий в изменении вязкости разрушения. Работы по влиянию газотермических, детонационных и плазменных покрытий на надежность и долговечность образцов с дефектами в виде трещин отсутствуют, имеются лишь весьма немногочисленные данные исследований выявления роли наплавки на вязкость разрушения. Наиболее интересна, на наш взгляд, работа [238], в которой описаны трудоемкие испытания, на основании которых сделаны однозначные выводы о влиянии конкретного покрытия на трещиностойкость ответственной конструкции.  [c.151]

Нами оценивалось влияние плазменного и ионно-плазменного покрытий на трещиностойкость стали У8. Определяли значения Je, согласно рекомендаций [228], на компактных образцах толщиной 5 мм при сосредоточенном изгибе.  [c.152]

Анализ полученных данных показывает, что влияние огрубления поверхности и стеснения пластической деформации, по-видимому, компенсируется в этом случае воздействием возникших при напылении благоприятных сжимающих напряжений, величина которых может быть достаточно высокой [246]. Нанесение ионно-плазменного покрытия не ухудшает трещиностойкости образца, значения, определенные для различных обработок, примерно одинаковы  [c.152]

Таблица 8.1. Трещиностойкость образцов с ионно-плазменным покрытием из нитрида титана Таблица 8.1. Трещиностойкость образцов с <a href="/info/33920">ионно-плазменным покрытием</a> из нитрида титана

Опыт, накопленный при испытании однородно упрочненных образцов, должен служить базой для разработки стандартных методик по определению характеристик трещиностойкости образцов с покрытиями. Необходимость создания таких унифицированных методик очевидна. Успешное использование результатов, полученных при испытании обычных образцов, подтверждает важность поисков методических решений для испытаний образцов с покрытиями.  [c.153]

ЛИЙ, работающих в экстремальных условиях (например, при —50°С), при форсированных режимах динамического, статического и циклического нагружений, при наложении абразивного изнашивания, при воздействии агрессивных сред и т. д. Поэтому наряду с традиционными испытаниями необходимо комплексно использовать такие методы исследования, как акустическая эмиссия, количественный анализ продуктов изнашивания, непрерывная регистрация структурных изменений в зоне контакта металла с покрытием при работе в паре трения с учетом воздействия окружающей среды на разрушение. Для изучения структуры композиции покрытие — основной металл следует шире привлекать стереологию, рентгеноспектральный микроанализ, ядерный гамма-резонанс, радиоспектроскопию. Принципы механики разрушения должны применяться не только для оценки трещиностойкости, но и для вычисления величины износа при абразивном изнашивании, а также учитываться при расчетах при теоретическом прогнозировании прочности соединения покрытия с основным металлом.  [c.193]

Всесторонний анализ структуры и свойств материалов с покрытиями поможет реализовать на практике комбинированное упрочнение, при котором покрытие обеспечивает," например, повышенную износостойкость, жаростойкость, а объемно упрочненный основной металл обладает достаточным запасом трещиностойкости. При этом успешно используются все главные дислокационные механизмы управления структурой создание субзерен, полигонов ячеек и зеренных микроструктурных барьеров — для упрочнения объема выделение дисперсных фаз, введение растворенных атомов замещения и внедрения и увеличение плотности дислокаций — для формирования специальных свойств поверхности. Полученное таким образом композиционное изделие будет удовлетворять требованию гармоничного сочетания надежности долговечности прочности,  [c.193]

Щ1Н)—поправочная функция, учитывающая геометрию пластины, можно установить предельную величину сг при принятой глубине дефекта и проводить оценку работоспособности с точки зрения трещиностойкости покрытия. Пользуясь этими соотношениями, можно определить допустимую толщину охрупченного слоя при химической деструкции покрытия во внутренней диффузионно-кинетической области.  [c.49]

Низкая трещиностойкость при нанесении покрытий на стальные детали, обусловленная высоким коэффициентом линейного расширения. На практике применяют предварительный подогрев, особенно массивных восстанавливаемых деталей, и контролируемое охлаждение для устранения растрескивания. Это также ограничивает применение покрытий из никелевых самофлюсующихся порошков в условиях термоциклирования.  [c.202]

Особенность покрытий на основе лака ХП-784 и эмали ХП-799 — высокая трещиностойкость с шириной раскрытия трещин в бетоне до 0,3 мм (допустимое раскрытие трещин в бетонной поверхности при защите эпоксидными и перхлорвиниловыми лакокрасочными материалами 0,05 мм). Трещиностойкость покрытия на основе эмали ХП-799 сохраняется до 80 °С. При оптимальной толщине покрытия его защитные свойства при наличии трещин допустимых величин сохраняются. Эмаль ХП-799 выпускается в широкой цветовой гамме и наносится по грунтовкам ЭИ-ООЮ, ГФ-021, ГФ-0119, ФЛ-ОЗК.  [c.232]

Трещиностойкость покрытия обеспечивается эластичным подслоем, защитная способность от агрессивных сред — химической стойкостью перхлорвиниловых эма.тей. Покрытие внедрено при защите конструкции на Стерлитамакско.м химическом заводе.  [c.47]

Два главных показателя конструктивной прочности — предел текучести, или сопротивление пластическому деформированию,, и вязкость разрушения, или трещиностойкость,— неоднозначно изменяются при различных упрочняющих обработках (механических,, термических, термомеханических) или варьировании химического состава сплава. Создание различных структурных препятствий движущимся дислокациям или увеличение легированности сплава повышают предел текучести, но одновременно снижают трещиностойкость. Иными словами, увеличение прочности, твердости и износостойкости металла сопровождается повышением вероятности хрупкого разрушения. Частичное преодоление этого противоречия возможно при конструировании композиционного материала (детали), сочетающего прочную, износостойкую, твердую поверхность нанесенного покрытия с пластичной, вязкой, трещиностойкой основой.  [c.3]

Анализируя роль покрытия в конструктивной прочности основных элементов корпуса реактора, делается вывод [238] о том, что нанесение наплавки из аустенитной стали на сталь 15ХНМФА обеспечивает такой уровень пластичности и вязкости в наплавке и зоне термического влияния, при котором, несмотря на присутствие высоких остаточных напряжений, наличие наплавки не снижает трещиностойкости.  [c.152]

Механические свойства основного металла, определенные после нанесения ионно-плазменного покрытия из нитрида титана отличаются незначительно, независимо от времени нагрева при напылении (сГ(, 2 = 1150 МПа Ов = 1400 МПа б = 5,5% ф = 36%). Структура стали У8 — отпущенный сорбит. Металлографические исследования показали, что даже на нетравленных шлифах граница между покрытием и основой проявляется сравнительно четко, покрытие копирует рельеф металла. На участках, нормальных к направлению движения напыляемых частиц, толщина покрытия больше, чем на остальных. Поверхность покрытия неровная, наблюдаются впадины и бугры. Дно крупных впадин, имеющих форму усеченного конуса, обычно опцавлено, края гладкие. Аналогичные образования были обнаружены при исследовании поверхности покрытия на растровом микроскопе [246]. Полагают, что в данном случае имеет место химическое взаимодействие материалов покрытия и основы. Результаты определения трещиностойкости приведены в табл. 8.1.  [c.152]


Из этих лакокрасочных материалов формируются трещиностойкие и вибростойкие защитные покрытия, в которых и ощущается пока наибольший дефицит.  [c.35]

Для лакокрасочных и мастнчпых покрытий применяют битумные материалы и их модификации. При воздействии кислых грунтовых вод лучшие результаты дают модифицирован иые эпоксидные покрытия — эпоксидно-сланцевые типа ЭСД, эпоксидно-каменноугольные, эпоксидно-тиоколовые. Можно использовать трещиностойкие мастики иа основе хлорсульфиро-вапного полиэтилена.  [c.77]

В мокрых цехах с сильно агрессивными газами следует применять окраску материалами на основе синтетических смол. В местах возможных брызг и обливов устраивают защиту колонн и стен химически непроницаемым подслоем с последующей облицовкой кислотоупорной плиткой на химически стойких замазках. НИИЖБ рекомендует эффективную защиту железобетонных конструкций трещиностойкими эластичными покрытиями — хлорсульфированным полиэтиленом, тиоколом, наиритом, эпоксидно-герметиковыми составами.  [c.85]

Трещиностойкие покрытия на основе хлорсульфированного полиэтилена. Лак ХП-734 и эмаль ХП-799 для нанесения пневматическим краскораспылителем и кистью разводят ксилолом или толуолом, а при безвоздушном распылении — смесью ксилола (30%) и сольвента (70%). Рабочая вязкость лака по ВЗ-4 должна быть 40 с, у эмали 50—60 с — для пневматического распыления, 180—200 с — под кисть, 160—230 с — для установок безвоздушного распыления.  [c.151]

ТАБЛИЦА 13,16. РЕКОМЕНДУЕМЫЕ СЛОИ ТОЛЩИНЫ ТРЕЩИНОСТОЙКИХ ПОКРЫТИИ  [c.194]

Основное направление в разработке новых типов покрытий в виде ОПГК — создание сборных конструкций из ребристых панелей цилиндрической формы. Это обусловлено их высокими технико-экономическими показателями по сравнению с типовыми плоскостными и пространственными конструкциями других форм, высокой несущей способностью, жесткостью и трещиностойкостью конструкций при действии равномерно распределенных и значительных сосредоточенных нагрузок, низкой трудоемкостью по изготовлению сборных элементов и монтажу покрытий, а также  [c.58]

Ниже изложены результаты исследования двухволнового покрытия ОПГК из цилиндрических панелей в натуральную величину и геометрически подобной ему модели в масштабе 1/4. Результаты исследований распространяются на широкую серию конструкций такого типа. При проведении исследования проверена прочность, жесткость и трещиностойкость конструкции и детально изучены такие вопросы, как влияние неразрезности оболочек, податливости их диафрагм, наличие углов перелома поверхности, ребер, работа конструкций при сосредоточенных силах, приложенных на контуре и в пересечении ребер и т. д., которые впоследствии дополнительно исследовались на специальных моделях.  [c.87]

Покрытие на основе наирита трещиностойко, что особенно важно при защите железобетонных сооружений.  [c.216]

Влияние наводороживания на охрупчивание металлов, т. е. повышение его склонности к хрупкому разрушению, известно давно. Водород, проникающий в металл при его изготовлении, термической обработке, сварке, а также при травлении, нанесении электролитических покрытий и, наконец, в процессе эксплуатации материала в некоторых активных средах, значительно ухудшает физико-механические свойства стали и, следовательно, понижает работоспособность конструкций. Склонность к хрупкому разрушению под действием водорода у мягких сталей довольно ярко проявляется в снижении их пластичности (уменьшении значений л и б), а также в уменьшении величины характеристик технологической пробы на перегиб и скручивание. Оценить склонность к хрупкому разрушению под действием водорода у высокопрочных и малопластичных материалов указанными методами довольно трудно. В таких случаях данные о трещиностойкости материала являются важным показателем степени влияния наводороживания на хрупкую прочность стали. Приведем результаты таких исследований на стали У8 в закаленном и низкоотпу-щенном состоянии. Эти исследования проводили на пластинах размером 360 X 180 мм с центральной изолированной трещиной [13, 49], подвергнутой растяжению сосредоточенной нагрузкой (см. приложение 3, рис. 117, а). После нескольких замеров параметров, характеризующих распространение трещины в данном материале в среде воздуха лабораторного помещения, образец снимали с разрывной машины и помещали в ванну для насыщения водородом. Наводороживание проводили в 20%-ном растворе серной кислоты при плотности тока 8 шдм в течение 2 ч. Немедленно после наводороживания определяли трещиностойкость наводо-  [c.158]

Для защиты от агрессивных газов институтом предлагаются химически стойкие и трещиностойкие комбинированные лакокрасочные покрытия. В качестве грунтов используются каучукообразные материалы (латекс СКС-65 ГПБ или дисперсия тиокола Т-50, нанесенная на поверхность в два слоя). Поверхностные слои выполняются из перхлорвиниловых эмалей (4 слоя).  [c.47]

Это прежде всего А.М. Богуславский — реология асфальтобетона, его сдвиго- и трещиностойкость Н.В. Горелышев — деформативные характеристики асфальтобетона и их роль в покрытии, принципы нормирования свойств асфальтобетона В.Н. Кононов — свойства асфальтобетона и расчет конструкций дорожных одежд В.К. Некрасов — надежность дорожных покрытий и их эксплуатация, применение местных каменных материалов А.К. Славуцкий — свойства заполнителей, шлаков и других отходов производства, использование их в строительстве.  [c.34]

Герметизация и коррозионная стойкость достигаются применением трещиностойких покрытий.на основе полиуретановой эмали с добавкой хризотилового асбеста I или II сорта (трещиностойкость 0,4 мм). Применение в качестве наполнителя асбеста позволило в 1,5. .. 2 раза увеличить трещиностойкость покрытий на основе эмалей ХС-7Ш, ХВ-785, ХВ-ПОО, ЭП-773. Асбест вводится в эмаль в количестве 40 % от массы лакокрасочных материалов при нанесении второго и третьего слоя покрытия. Перед окраской бетонную поверхность башни обрабатывают 10 % ной водной эмульсией ГКЖ-94. Экономическая эффективность при этом составляет 3 р. на 1 м .  [c.46]

Покрытие из эмали XВ-5169 переводит древесину в категорию трудновоспламеняемых материалов, обладает хорошими влагозащитными свойствами, устойчиво в условиях как умеренного климата, так и Крайнего Севера. Защищает древесину от возгорания при расходе не менее 600 г/м , проявляет высокую адгезионную прочность к древесным подложкам, эластично, трещиностойко.  [c.119]

При условии сплошности, отсутствия трещин и отслоений непроницаемость ЛКП находится в прямой зависимости от его толщины (количества покрывных слоев). Опытом установлено, что оптимальная толщина химически стойких покрытий для железобетонных конструкций, эксплуатируемых в слабоагрессивных средах, составляет 100. .. 150 мкм, в среднеагрессивных средах — 150. .. 200 мкм и в сильноагрессивных средах — 200. .. 250 мкм. Дальнейшее увеличение толщины покрытий может отрицательно повлиять на их трещиностойкость, и, кроме того, дополнительный (сверх оптимального) расход лакокрасочных материалов экономически не оправдан, поскольку их долговечность ограничена (табл. 28.14).  [c.167]

Для защиты железобетонных конструкций, на поверхности которых в процессе эксплуатации возможно появление трещин, необходимо применять трещиностойкие ЛКП (наиритовые, тиоколовые, битумные и на основе хлорсульфированного полиэтилена). При высокой степени агрессивности среды для защиты наиболее ответственных сооружений следует применять армированные трещиностойкие покрытия, в которых в качестве армирующего материала могут быть использованы стеклоткань, графи-тированная ткань и т. п.  [c.168]


При низких скоростях роста трещины в меди и стали наблюдали ровные плоские участки, покрытые вырожденными бороздками. На первой стадии развития усталостной трещины в низкоуглеродистой стали макроскорость роста трещины примерно на два порядка меньше микроскорости, оцениваемой по ширине усталостных бороздок [240]. Приведенный выше анализ взаимосвязи структуры материалов и механизмов разрушения с диаграммой усталостного разрушения показывает, что исследование механизмов распространения трещины при циклических нагрузках позволит в итоге приступить к конструированию материалов с высокой трещиностойкостью.  [c.163]

Для увеличения трещиностойко-сти покрытий из литого асфальтобетона рекомендуется при приготовлении смеси вводить в нее полимерные добавки, например карбоксили-катный латекс СКД-1.  [c.173]


Смотреть страницы где упоминается термин Покрытия трещиностойкие : [c.176]    [c.152]    [c.5]    [c.68]    [c.31]    [c.171]    [c.175]    [c.176]    [c.197]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.2 , c.47 ]



ПОИСК



Трещиностойкость

Трещиностойкость (вязкость разрушения) объемно упрочненных сплавов с покрытиями



© 2025 Mash-xxl.info Реклама на сайте