Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия при излучении

Особенности коррозии при Излучении  [c.532]

Кинетические характеристики коррозии при излучении  [c.536]

Исследование ряда металлов в условиях коррозии при излучении позволило получить следующие выводы.  [c.538]

Н — ОТ об. ДО т. кип. в воде с высокой скоростью течения. Иногда медь подвергается коррозии при тепловом излучении.  [c.250]

Большое влияние на работу конструкции оказывают внешние токи. При катодной поляризации в большинстве случаев может быть обеспечена защита от коррозии. При анодной поляризации для систем металл — раствор, не склонных к пассивации, происходит усиленное растворение металла. Необходимо принимать специальные меры по защите от коррозии конструкций и сооружений от блуждающих токов. Специфическое влияние на коррозионные процессы оказывают ультразвук и радиоактивное излучение.  [c.24]


Магний неустойчив против коррозии. При повышении температуры он интенсивно окисляется. При этом оксидная пленка магния (MgO) не обладает защитными свойствами (как пленка Al Og на алюминии), так как ее плотность значительно выше плотности магния, поэтому она растрескивается. С возрастанием температуры скорость окисления магния резко возрастает и выше 500 °С магний самовоспламеняется. Поэтому при использовании магния и его сплавов, особенно при разливке, следует принимать меры против его окисления и воспламенения. Порошок, тонкая лента, мелкая стружка магния представляют большую опасность, так как возгораются на воздухе при обычных температурах, горят с вьщелением большого количества теплоты и излучением ослепительно яркого света.  [c.212]

Коррозионные процессы при излучении имеют свои особенности. Коррозия при ионизирующем излучении характерна для атомной промышленности, а также для условий эксплуатации металлоконструкций, включающих фактор проникающей радиации.  [c.16]

Защита от коррозии при ионизирующем излучении  [c.532]

На цирконий и его сплавы ускоряющее влияние излучения наблюдается только при большой интенсивности нейтронного облучения нейтрон/(см -с) ], что обусловлено большой устойчивостью защитной пленки. На коррозию титана оказывают влияние большие частицы.  [c.371]

При работе ядерного реактора радиационная обстановка в помещениях, расположенных в непосредственной близости от него, определяется проникающим излучением активной зоны, конструкций реактора и защиты, а также активностью теплоносителя. При остановке реактора радиационная обстановка в реакторном зале обусловлена остаточным у-излучением продуктов деления ядерного горючего, излучением активированных конструкций реактора и защиты. Во всех других помещениях, где расположены коммуникации или элементы оборудования технологического контура, омываемые теплоносителем, радиационная обстановка после остановки реактора определяется отложениями радиоактивных продуктов коррозии и примесей в теплоносителе, а иногда и продуктами деления ядерного горючего.  [c.7]

Практические применения радиационной химии можно подразделить на оборонительные и наступательные . На первом этапе развития ядерной промышленности в основном велись работы оборонительного плана по радиационно-химической защите материалов в реакторах и вообще в условиях высокой радиоактивности (в частности, в космосе). При сильном облучении металлы становятся склонными к коррозии, хрупкости, смазочные масла портятся, в изоляторах увеличивается электропроводность и т. д. Была проведена большая работа по изысканию материалов, стойких по отношению к облучению.. Так, было найдено, что из металлов в условиях облучения хорошо сохраняют свои антикоррозийные и механические свойства цирконий и его сплавы. Хорошей радиационной стойкостью обладают и некоторые полимерные материалы, например, полистирол, для которого малы выходы как сшивания, так и деструкции (радиационно-стабильные (обычно ароматические, см. п. 3) группы, не только сами устойчивы по отношению к излучению, но могут защищать от разрушения и другие полимерные молекулы, отсасывая от них энергию (так называемая защита типа губки). Применяется также защита типа жертвы . В этом случае защищающие молекулы, например, могут захватывать образующийся в радиационно-химическом процессе атомарный водород, препятствуя последнему реагировать с другими молекулами.  [c.665]


Так как аморфные пленки нагревают лишь до температур меньше 100 °С, они обладают высокой чувствительностью при записи. Это позволяет применять для записи полупроводниковый лазер и полимерную подложку. Низкая мощность лазерного излучения обеспечивает повышенное число циклов перезаписи. Кроме того, эти пленки высоко термостабильны и слабо подвержены коррозии. Недостаток пленок — значительная зависимость температуры Кюри от их состава, вследствие чего к ним предъявляют повышенные требования по однородности.  [c.32]

ИК-спектры поглощения твердого вещества - вещества защитных пленок, продуктов коррозии, осадков и отложений - более сложны, чем спектры водных растворов. Это вызвано искажением структуры соединения, находящегося в твердой фазе, вследствие взаимодействия кристаллического поля с излучением. При этом происходит так называемое снятие вырождения и число полос в спектре увеличивается. Однако методика исследования твердофазных систем проще. Наиболее широко применяют методику, предусматривающую прессование таблеток из исследуемого вещества и бромида калия, особенно бромида калия марок для ИК-спектров и оптически чистого. Здесь используется пластичность бромида калия, приобретаемая при повышенном давлении.  [c.201]

Ускоренные лабораторные испытания проводятся для сравнения коррозионной стойкости металлов. Если необходимо повысить скорость коррозии, то усиление влияющих факторов не должно вносить качественных изменений в процесс коррозии. В жидкой среде ускорение процесса достигается повышением скорости движения среды или изменением концентрации компонентов, повышением температуры среды, насыщением ее воздухом, кислородом и т. д. При ускоренных испытаниях, воспроизводящих атмосферные условия, допускается повышать температуру до верхнего предела, существующего в природных условиях, увеличивать влажность путем повторной конденсации, повышать интенсивность ультрафиолетового излучения, ограничивая инфракрасное излучение, и т. д.  [c.91]

Под морской средой> понимают совокупность физических условий — от насыщенного мельчайшей водяной пылью морского воздуха до ила на океанском дне. Необходимо учитывать такие параметры, как температура, скорость ветра, солнечное излучение и концентрация растворенного в воде кислорода. Например, в Атлантическом океане, где концентрация растворенного кислорода сравнительно высока на всех глубинах, коррозия должна быть больше (при прочих равных условиях), чем в Тихом океане, где на глубине около 700 м наблюдается минимум концентрации растворенного кислорода.  [c.9]

Например, наблюдалось значительное увеличение скоростей коррозии сплавов циркалой-2 и Zr—2,5 Nb при облучении в паре. При температуре 300° С, плотности потока быстрых нейтронов с энергией больше 1 Мэе З-Ю нейтрон (см -сек), мощности дозы у-излучения 5 10 р1ч скорость коррозии циркалоя-2 и сплава Zr—2,5 Nb была вдвое выше перед самым переломом  [c.247]

Проблема отложений на реакторных поверхностях изучалась на лабораторных установках (с источниками ионизирующих излучений), на реакторных петлях и путем обследования сборок твэлов. Отложения в реакторе нельзя рассматривать в отрыве от процесса выхода продуктов коррозии, поскольку скорость выхода и свойства выходящих продуктов коррозии должны быть важными факторами при формировании отложений в активной зоне. Это необходимо принимать во внимание при оценке данных по отложениям.  [c.291]

Лабораторные и петлевые исследования под облучением. Наличие поля ионизирующего излучения является одной из основных отличительных особенностей процесса теплопередачи от ядерного горючего к циркулирующему теплоносителю атомной электростанции. Поэтому при создании водоохлаждаемых ядерных реакторов вначале исследовалось влияние ионизирующего излучения на процессы отложения. Работы выполнялись с предварительно приготовленными (синтетическими) продуктами коррозии на ускорители электронов в качестве источника ионизирующего излучения [6]. В работе [7] использовалась экспериментальная установка того же типа с продуктами коррозии углеродистой стали и образцами из циркалоя. Была получена количественная информация, позволяющая сделать следующие выводы  [c.291]


Свинец (табл. I) обладает низкой проницаемостью для рентгеновского и радиоактивного излучений и высокой пластичностью хорошо сплавляется с другими металлами, легко наносится (в расплавленном состоянии и электролитически) на различные металлы, хорошо поглош,ает вибрацию и звук, обладает хорошими смазывающими и антифрикционными качествами. При ударе о свинец не образуется искр. Образующиеся на поверхности свинца тонкие плотные пленки окислов, сульфатов, карбонатов и хроматов хорошо защищают его от коррозии.  [c.245]

Влияние излучения на коррозию различных металлов в атмосфере воздуха при 98% относительной влажности (длительность облучения 16 час, температура 25° С)  [c.39]

Наличие Y-излучения и патока нейтронов увеличивает скорость коррозии сплава Zr—I % Nb по расчетно-теоретическим данным в 2—4 раза. Экспериментально получено, что полное увеличение массы прокорродировавшего металла, вычисленное по приведенной в табл. 8.56 формуле, втрое меньше экспериментального значения при экспозиции 30 ООО ч.  [c.308]

Для предотвращения коррозии при излучении в атмосферных условиях целесообразно использовать коррозионно-стойкие аустенитные стали в качестве конструкционных материалов и покрытий [3]. Углеродистые малолегированные стали применяют с методами дополнительной защиты.  [c.540]

Контрольные образцы, за исключением железа, не подвергавшиеся облучению, сохранили без изменения внешний вид и вес. Облучение в значительной степени ускоряет коррозию же теза, меди, цинка и заметно меньше алюминия. Скорость коррозии стали 1Х18Н9Т при наличии облучения не изменяется. А. В. Бялобжес-ский в работе [1,32] показал, что в атмосферных условиях действие облучения наименее эффективно в отношении металлов, способных образовывать на своей поверхности прочные окисные пленки. С повышением интенсивности облучения скорость коррозии железа увеличивается. Образец, экранированный свинцом от прямого воздействия у-излучения, корродировал в такой же степени, как и незащищенный. 0 свидетельствует о том, что основную роль в усилении коррозии при облучении играют продукты радиационного изменения атмосферы, а не активация поверхности металла.  [c.39]

При введении в воду 10%-ного дициклогексиламина скорость коррозии при всех условиях уменьшается примерно в 200 раз. Гидразин оказался эффективным лишь при полном погружении металла в электролит. Проверка радиационной стойкости дициклогексиламина (10%) до интегральной дозы излучения 10 нейтронов/см [при интенсивности потока 10 нейтронов/см ]  [c.278]

Значение критической влажности воздуха при излучении смещается в область значений относительной влажности 15... 30 % и зависит от мощности поглощенной дозы. Минимальная доза, ускоряющая коррозию при у-и р-излучении, — 10 эВ/см с. Повышение дозы до 10 эВ/см -с для листового металла ведет к его перегреву, при котором пленка влаги на поверхности отсутствует и коррозии не происходит. Деструктирующий эффект Эдо обусловлен упругим и тепловым воздействием поверхности металла с излучаемыми частицами. Ионизирующее излучение, особенно тяжелыми частицами, приводит к появлению в структуре твердого тела различных дефектов вакансий, дислокаций, пустотелых каналов, атомов внедрения и т. д. В окисных пленках в результате воздействия излучения происходят аналогичные процессы и возникают изменения структуры оксида и поверхностного слоя металла. Возрастает скорость диффузии различных компонентов раствора через пленку и ее ионная проводимость. особенно опасен для металлов, коррозионная стойкость которых обусловлена образованием плотных защитных слоев покрытий конверсионного типа, например, окисных пленок. -  [c.535]

Для защиты от коррозии при воздействии излучения в водных растворах возможно использование коррозионно-стойких аустенитных сталей, для которых излучение в ряде случаев создает защитный эффект. Алюминий, титан и цирконий могут применяться в условиях отсутствия деструктирующего эффекта (неагрессивные среды, излучение легких частиц).  [c.540]

Наиболее опасными в отношении коррозии при наличии излучения являются различные галогенсодержащие органические системы.  [c.18]

Влияние излучения на коррозию и пассивность. Ускорение коррозии при действии света было отмечено Криббом и Арно а также Френдом з. Различные воды и растворы солей действуют на железо гораздо быстрее при дневном свете, чем в темноте. Факт, зарегистрированный Гаазе, заключающийся в том, что свет влияет на катодную деполяризацию кислородом пары железо — платина, может помочь объяснить это явление. Вернон заметил, что свет влияет на поведение латуни в травильных ваннах, содержащих разбавленную серную кислоту, а также ускоряет при некоторых условиях тускнение никеля . Были зарегистрированы и другие примеры ускорения коррозии при действии света, однако в некоторых случаях, возможно, что непосредственными причинами здесь являются разрывы пленки или возникающая в какой-то степени при действии лучей термическая конвекция.  [c.403]

Установка содержит гидромеханическое сканирующее устройство, импульсный толщиномер и осциллограф. Сканирующее устройство вводится внутрь контролируслюй трубы, заполненной водой. Ось преобразователя совпадает с осью трубы и сканирующего устройства. Излученный импульс падает на вращающееся вокруг оси преобразователя зеркало расположенное к ней под углом 45°. Далее акустический импульс попадает на стенку трубы, частично отражаясь обратно, частично рассеиваясь и частично проходя к наружной стенке, от которой часть энергии, отражаясь, возвращается обратно к преобразователю. Импульсный толщиномер установки ИРИС вырабатывает импульсы подсветки луча осциллографа лишь от первого эхо-сигнала (отражение от внутренней стенки) до второго эхо-сигнала. При сканировании луч осциллографа смещается по оси у в соответствии с положением зеркала. В результате получается изображение, показанное иа рис. 82. Одна строка изображения (по горизонтали) соответствует одному зондирующему импульсу. Полная развертка по вертикали соответствует одному обороту зеркала, т, е. соответствует развертке сечения контролируемой трубы. Как видим, вследствие наличия слоя коррозии значительная часть эхо-сигналов пропадает, и в этих случаях обычный толщиномер дает сбои. По изображению на рис. 82 легко измерить толщину стенки или глубину коррозии в любом месте, используя аппроксимацию недостающих точек.  [c.273]


В связи с тем что печатные панели требуют покрытия во избежание чрезмерной коррозии и токов ионизации, важное значение приобретает вопрос выбора типа покрытий, которые могли бы ослабить неблагоприятное влияние различных факторов, включая излучение. В ходе исследований, посвященных поиску хороших покрытий, были проведены эксперименты [24] по изучению влияния радиации на фольгированные медью фиберглас-меламиновые печатные панели с изоляционными покрытиями и без них. В этих экспериментах было исследовано пять печатных панелей (одна без покрытия и четыре с различными изоляционными покрытиями). В качестве покрытий использовали силиконовый лак, нитролак, эпоксиднополиамидные и полиэфирные покрытия. Измеряли токи утечки между медными фольгами и внутриэлектродную емкость как до, так и в ходе Y-облучения при мощности дозы около 7-10 эрг1 г-сек). В качестве источника излучения использовали источник Со с водяной защитой.  [c.408]

Развитие коррозии под напряжением в зоне очага разрушения обусловливает наличие там специфических продуктов коррозии. Так, выполненный на установке УРС-60 в излучении железного анода рентгенофазовый анализ отложений на стенках трещин разрушений в ряде случаев выявил магнетит и сульфиды железа, являющиеся результатом коррозионного взаимодействия механически активированной трубной стали 17ГС с высокосернистой арлаи-ской нефтью. Наличие магнетита указывает на образование коррозионных трещин без доступа кислорода воздуха. Сульфиды железа на поверхности излома были выявлены при воздействии концентрированного раствора азотнокислого кадмия, подкисленного соляной кислотой. О их присутствии свидетельствует желтая окраска, обусловленная наличием сульфида кадмия.  [c.228]

При контроле качества сварных соединений и узлов атомных энергетических установок в условиях их эксплуатации и ремонта задачи радиографии существенно осложняются, так как само контролируемое изделие является источником ионизирующего излучения или находится в условиях повышенного радиационного фона, многократно превышающего допустимые санитарные нормы. Сварные соединения, как правило, являются неповоротными и находятся в труднодоступных местах, что исключает возможность применения в этих условиях рентгеновских аппаратов и ускорителей и позволяет использовать в основном только радиоизотопиые источники излучения. Радиационная обстановка в зоне контроля определяется излучением, создаваемым продуктами коррозии на внутренних стенках трубопроводов первого контура, а также излучением от основного оборудования, создаваемого из-за активации материалов нейтронными потоками реактора.  [c.49]

Коррозия циркалоя в реакторе BWR. Вильямсон и др. [38] опубликовали результаты 26 металлографических анализов окисных пленок на 10 топливных стержнях с оболочками из циркалоя-2 и циркалоя-4, экспонировавшихся в BWR от 200 до 365 дней при поверхностной температуре около 280° С (кипение). Содержание водорода в 23 пробах от 6 различных топливных стержней было определено с помощью горячей вакуумной экстракционной техники. Привес за счет коррозии рассчитан в предположении, что 15,6 мг/дм соответствует толщине окиси в 1 мкм. Наблюдаемые толщины окиси изменялись от 1 до 67,3 мкм. Все окисные пленки толще 8—10 мкм (156 мг1дм ) содержали как радиальные, так и периферические прожилки. Слишком тяжелые окисные пленки были обнаружены около дефектов или под дистанционирующими проволочками. Существенное изменение толщины пленок наблюдалось при изменении теплового потока и потока тепловых нейтронов. На рис. 8.11 показано сравнение распределения -у-излучения по стержню (выгорание) и изменение толщиш ОКИСИ вдоль стержня. В нижней  [c.249]

Эти результаты показывают, что поведение свежих (т. е. недавно вышедших в теплоноситель) продуктов коррозии сильно зависит от поля ионизирующего излучения и что это сочетание определяет процесс отложения. При уровнях излучения, имевших место в испытаниях, рост pH, по-видимому, увеличивает тенденцию к отложению примесей. Подобные данные об отложении продуктов коррозии нержавеющей стали или инко-неля отсутствуют в литературе. Ввиду малых скоростей выхода в этом случае приходится использовать метод меченых атомов.  [c.292]

Для перевода никеля в пассивное состояние требуется наложение анодного тока порядка 10 а см . Окислительная способность облученного раствора была недостаточной для пассивации никелевого электрода. Однако смещение потенциала в положительную сторону, в соответствии с анодной поляризационной кривой, увеличивает скорость коррозии. Обычно же следует ожидать уменьшения скорости коррозии металла под воздействием облучения, когда эффективная скорость восстановления окислительных компонентов радиолиза превышает плотность тока, необходимую для пассивации металла. Увеличение потенциала аустенитной нержавеющей стали типа 1Х18Н9Т в растворе 0,1Н серной кислоты при температуре 85° С под действием у-излучения обнаружено также В. Е. Клоком [1,22]. Несмотря на термическую нестойкость перекиси водорода, она обнаружена после облучения в растворе, нагретом до температуры 150° С.  [c.36]

Влияние ионизирующего излучения на скорость коррозии сплавов алюминия при t = 260° С и скорости потока 1 м сек (длительность испытаний 700 час, мощность излучения 0,1 ат1н)  [c.186]

Примесями, вызывающими коррозию в остаточном нефтепродукте, являются иатрий, ванадий и сера. Ни один из них не оказывает значительного коррозионного воздействия на безникелевые стали при температуре <620° С. При более высокой температуре скорость коррозии очень чувствительна к отношению V/Na и будет увеличиваться при изменении отношения от 1 до 3. Скорость коррозии очень чувствительна к температуре осадков на поверхности трубы и поэтому сильно зависит от температуры газа или теплового излучения, попадающего на перегреватель. Легирование никелем делает сталь очень чувствительной к коррозии в присутствии серы, особенно если нет защитного зольного осадка. Поэтому аустенитные стали обладают очень малыми преимуществами перед ферритными для перегревателей станций, использующих нефть, и их применение ограничивается очень узким температур-  [c.191]

Расчет циркуляционного контура выполняют для средних (расчетных) условий работы. Практически эти условия выполняются только для основной массы параллельно включенных труб. Отдельные подъемные трубы или небольшая группа труб по ряду причин (затененность от прямого излучения факела, шлакование и др.) обогреваются слабее основной массы парообразующих труб, и поэтому параметры циркуляции для них могут сильно отличаться от расчетных. При этом могут образоваться режимы, при которых появляется опасность возникновения ухудшенного теплообмена и недопустимого повышения температуры стенки. Последнее в свою очередь вызывает отложения накипи и шлама, а также щелочную коррозию. Такими опасными режимами являются застой циркуляции, свободный уровень, опрокидывание циркуляции, расслоение потока пароводяной смеси и образование пара в опускных трубах.  [c.107]

Нержавеющая сталь в водных растворах при 300°С корродирует со скоростью около 0,5 мг/(м2-ч). Эта величина не оказывает сколько-нибудь заметного влияния на механическую прочность материалов. Однако поверхности конструкционных материалов на АЭС столь велики, что в сутки за счет коррозионно-эрозионных процессов в таких сравнительно мощных установках, как Дрезденская и Шиппингпорт-ская АЭС в США, или Нововоронежская и Белоярская АЭС в СССР, образуется до 100 г продуктов коррозии. Для более мощных блоков переход продуктов коррозии в воду будет соответственно большим. Состав продуктов коррозии в реакторной воде и в отложениях разнообразен и зависит от применяемых конструкционных материалов. Особенно неблагоприятны долгоживущие изотопы продуктов коррозии с жестким -у-излучением, например изотопы кобальта и цинка. В табл. 15-1 приведены основные долгоживущие  [c.149]


Во-вторых, при указанных выше соотношениях скоростей газа и воздуха процесс горения начинается на расстоянии 20—40 мм от распределительной трубы. По данным Института газа Академии Наук УССР, даже при работе на холодном воздухе температура распределительной трубы в отдельных местах достигает 330 и даже 530° С. Находясь в столь неблагоприятных условиях, распределительная труба часто подвергается короблению и усиленной коррозии. Кроме того, нарушения равномерности истечения газа по длине трубы иногда возникают вследствие термического разложения углеводородов, приводящего к закоксовыванию отверстий и к постепенному уменьшению расхода газа. Температурные условия, в которых работает газораспределительная труба, можно смягчить путем некоторого усложнения конструкции горелки. В Куйбышевском политехническом институте разработана подовая горелка с двусторонним подводом газа в канал-смеситель из распределительных труб, защищенных от излучения топки и газового факела. Шаг отверстий выбирается таким образом, чтобы газовые струи, выходящие из отверстий одной газораспределительной трубы, не сталкивались со струями, выходящими из отверстий другой трубы [Л. 1 17]. Подробных данных об эксплуатационных характеристиках подовых горелок с двусторонним подводом газа в литературе еще нет. В частности, надлежит выяснить, как отразится на надежности работы горелки изменение условий омывания газораспределительной трубы воздушным потоком.  [c.140]

В результате действия радиации на жидкости для гидравлических систем заметно изменяется их вязкость [11]. Исследования показали, что вязкость жидкости на нефтяной основе MIL-0-5606, загущенной полимером, при действии радиации значительно снижается. Меньше снижается вязкость жидкости на основе эфиров кремневой кислоты жидкости же на основе хлорфенилсиликонов затвердевают. На окислительнокоррозионные характеристики вредно действуют у ИЗлучения. Наибольшие изменения испытывает жидкость по спецификации MIL-0-5606 она сильно разрушается, о чем свидетельствуют повышение кислотного числа и коррозия металлов.  [c.352]


Смотреть страницы где упоминается термин Коррозия при излучении : [c.199]    [c.126]    [c.21]    [c.36]    [c.41]    [c.426]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.16 , c.532 ]



ПОИСК



Защита от коррозии при ионизирующем излучении Герасименко, Л. А. Михайлова)

Мероприятия по защите от коррозии при излучении

Особенности коррозии при излучении



© 2025 Mash-xxl.info Реклама на сайте