Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газовая (химическая) коррозия металлов

Кинетика газовой (химической) коррозии металлов  [c.46]

Наиболее распространенным и практически важным видом химической коррозии металлов является газовая коррозия — коррозия металлов в газах при высоких температурах. Газовая коррозия металлов имеет место при работе многих металлических деталей и аппаратов (металлической арматуры нагревательных печей, двигателей внутреннего сгорания, газовых турбин, аппаратов синтеза аммиака и др.) и при проведении многочисленных процессов обработки металлов при высоких температурах (при нагреве перед прокаткой, ковкой, штамповкой, при термической обработке и др.). Поведение металлов при высоких температурах имеет большое практическое значение и может быть описано с помош,ью двух важных характеристик — жаростойкости и жаропрочности.  [c.16]


Применительно к наиболее важному и распространенному металлическому конструкционному материалу — сплавам на железной основе и наиболее распространенному процессу химической коррозии металлов — газовой коррозии — можно отметить следующее.  [c.137]

В первом случае будет происходить разъедание поверхности (рис. 21) в результате нижеперечисленных процессов. Коррозия металлов и сплавов представляет собой их разрушение в результате химического или электрохимического действия среды. Разрушение всегда начинается с поверхности детали. Различают атмосферную, электрохимическую и газовую (химическую) коррозию.  [c.85]

Электрохимическая коррозия особенно характерна для подводных частей морских судов, установок химической промышленности, для машин при их хранении. Газовая (химическая) коррозия возникает при контакте металлов и сплавов с сухими газами или неэлектролитными теплоносителями. Типичными примерами этих процессов являются высокотемпературное окисление деталей газовых турбин, котельных топок, клапанов двигателей внутреннего сгорания.  [c.86]

Газовая коррозия — это разновидность химической коррозии металлов. Она протекает в условиях, исключающих наличие влаги на поверхности металла и возникновение электрохимической коррозии. Поэтому в большинстве случаев считают, что газовая коррозия протекает при повышенной температуре, когда вода находится в газовой фазе, или при обычной температуре, но в сухой атмосфере.  [c.11]

Химическая коррозия металлов имеет место при их взаимодействии с газами м парами химических элементов при отсутствии влаги, а также с жидкостями, не проводящими, электрический ток и не являющимися электролитами. Металл в этол/1 случае разрушается за счет чисто химических реакций на границе раздела его со средой. Такой вид коррозии характерен для лопаток газовых турбин, деталей реактивных двигателей, печ-  [c.6]

Химическая коррозия металлов протекает в неэлектролитах и в сухих газах. Процесс химической коррозии представляет собой, по существу, прямое химическое взаимодействие металла с агрессивной средой. Химическую коррозию в сухих газах называют газовой коррозией.  [c.301]

Химическая коррозия металлов в газовой среде  [c.18]

Газовая (химическая) коррозия некоторых металлов  [c.579]

Наиболее важным видом химической коррозии является взаимодействие металла при высоких температурах с кислородом и другими газообразными активными средами. Подобные процессы химической коррозии металла при повышенной температуре носят также название газовой коррозии. Многие ответственные детали самолетов и авиадвигателей подвергаются разрушению из-за газовой коррозии (лопатки турбин и сопла двигателей, клапаны, выхлопные патрубки и коллекторы поршневых двигателей и др.).  [c.445]


Газовая коррозия — это химическая коррозия металлов в газовой среде при минимальном содержании влаги (как правило не более  [c.14]

Указанные процессы химической коррозии металлов при повышенных температурах носят название газовой коррозии. Борьба с газовой коррозией имеет большое значение для народного хозяйства и успешного развития новой техники. Многие ответственные детали инженерных конструкций сильно разрушаются от газовой коррозии (лопатки газовых турбин, сопла ракетных двигателей, элементы электронагревателей, колосники и арматура печей и т. д.). Большие потери от газовой коррозии (угар металла) несет металлургическая промышленность при процессах горячей обработки металлов.  [c.35]

Газовая коррозия — химическая коррозия металлов тз газах (обычно прп высоких температурах).  [c.323]

Химическая коррозия металлов протекает в сухих газах и неэлектролитах, т. е. в тех средах, которые не проводят электрический ток. Примером химической коррозии является газовая коррозия выпускного тракта автомобильного двигателя при взаимодействии металла с отработавшими газами в зоне высоких температур.  [c.241]

Газовой коррозией называют химическую коррозию металлов и сплавов, возникающую в результате их взаимодействия с сухими газами при высоких температурах, а жаростойкость (или окалиностойкость) металлов и сплавов характеризуется их сопротивляемостью газовой коррозии.  [c.7]

Химическая коррозия металлов осуществляется без разделения на отдельные стадии, причем этот процесс не сопровождается перетеканием электрического тока между металлом и агрессивной средой, и, кроме того, продукты коррозии образуются непосредственно на том участке поверхности металла, где происходит его разрушение — в месте взаимодействия металла с агрессивной средой. Химическая коррозия происходит, как правило, при действии на металлы жидких неэлектролитов и сухих газов. В соответствии с этим химическую коррозию подразделяют на коррозию металлов в неэлектролитах и на газовую коррозию.  [c.4]

Наиболее распространенным и практически важным видом химической коррозии металлов является газовая коррозия — коррозия металлов в газах при высоких тем-  [c.19]

При химической коррозии металлов окисление металла и восстановление окислительного компонента коррозионной среды подчиняется законам химической кинетики гетерогенных реакций. Этот вид коррозии протекает в неэлектролитах и сухих газах. В авиационной технике химическая (газовая коррозия) происходит под действием высоких компонентов среды при температурах на деталях из стали, нагреваемых на несколько сотен градусов, и выражается образованием окислов металла. Среди защитных средств лакокрасочные покрытия замедляют газовую коррозию при нагреве до 500—600° С. Выше этих температур лакокрасочные покрытия не являются эффективным средством.  [c.33]

Частный случай химической коррозии металлов в различных газовых средах при высоких температурах называется обычно газовой коррозией.  [c.99]

Для изучения коррозионной стойкости сталей аустенитного к ферритного классов иногда используется метод увеличения массы образцов. Этот метод позволяет определить показатели коррозии металла при его окислении лишь в газовой атмосфере либо в слое отложений, которые химически не воздействуют со средой. Метод заключается в определении увеличения массы образца из.-за образования оксидов. При этом для получения данных па уменьшению массы металла в ходе коррозии необходимо в предварительных тарировочных опытах установить соотношение увеличения массы образца к уменьшению массы чистого металла (беа оксидного слоя).  [c.115]

Весь анализ справедлив и для случая химической реакции, если вместо аА подставить химическое сродство, а р положить равным нулю, т. е. система уравнений (193) и (194) распространяется не только на случай электрохимической коррозии, но и на различные виды химической коррозии (газовая коррозия, коррозия в неэлектролитах, расплавах металлов и неионогенных веществ и т. д.).  [c.123]


Коррозия — это разрушение металлов, вызванное химическим или электрохимическим взаимодействием их с коррозионной средой. Процессы коррозии могут стимулировать биологические факторы. Разрушение железобетонных конструкций сопровождается обычно интенсивной коррозией металлической арматуры. Высокотемпературная (газовая) коррозия, как и коррозия металлов в органических (неполярных) веществах протекает по химическому механизму.  [c.12]

Различают два процесса коррозии — химический и электрохимический. Первый наблюдается при взаимодействии металла со средой путем химических реакций. Наиболее распространенным примером химической коррозии является газовая коррозия, имеющая место, в частности, при контакте металлов с сернистым газом, сероводородом, углекислым газом и другими газами при повышенных температурах,  [c.6]

Наблюдается химическая коррозия на лопатках газовых турбин, в процессе горячей обработки металлов и т. п.  [c.7]

Химическую коррозию принято обычно отличать от коррозии, протекающей по Электрохимическому механизму. Считают, что коррозия металлов в газовой фазе при повышенных температурах протекает по чисто химическому механизму. Однако и при химической коррозии на границе металл-газ также существует скачок потенциала, существенно влияющий на протекание коррозионного процесса. Химическую коррозию в общем виде представляют уравнением j  [c.20]

Коррозия металла — процесс его разрушения, происходящий вследствие химического или электрохимического воздействия внешней среды [Л. 4]. В топке и газоходах агрегата парогенератора газовая коррозия наружной поверхности труб и стоек пароперегревателей происходит под воздействием кислорода, углекислого газа, водяных паров, сернистого и других газов внутренней поверхности труб — в результате взаимодействия с паром или водой.  [c.7]

В практике нередко встречается сложный процесс износа, возникающий вследствие одновременного воздействия на поверхности котельных труб активной газовой среды и потока, несущего абразивные частицы. Такой процесс получил название абразивно-коррозионного (или коррозионно-газоабразивного) износа. В этом случае износ происходит в результате химического взаимодействия металла с окружающей средой (коррозии) и механического разрушения абразивными частицами продуктов этого взаимодействия (коррозионных пленок) или металла. Коррозия и механическое разрушение взаимно интенсифицируются, так как оксидные пленки противостоят абразивному износу слабее, чем металл, а обнажающийся при этом металл корродирует интенсивнее, чем при наличии оксидной защитной пленки.  [c.26]

Различают химическую коррозию, протекающую при воздействии на металл газов (газовая коррозия) и неэлектролитов (нефть и ее производные), и электрохимическую коррозию, вызываемую действием электролитов кислот, щелочей и солей. К электрохимической коррозии относятся также атмосферная и почвенная коррозия.  [c.291]

Химическая коррозия происходит при контакте металла с перегретым паром и сухими газами. Химическую коррозию в сухих газах называют газовой коррозией.  [c.217]

Коррозионный процесс возможен при AGggs <0, а его интенсивность характеризуется абсолютной величиной AGggs. Расчет этих значений для различных реакций окисления металлов сухим воздухом (газовая химическая коррозия) по уравнениям (3) и (5) позволяет судить о термодинамической интенсивности окисления металлов, о сродстве металлов к кислороду.  [c.64]

Расчет значений Д G298 Для различных реакций окисления металлов сухим воздухом — газовая химическая коррозия (уравнение (а) табл. 1 и уравнение (1) табл. 2) позволяет судить о термодинамической интенсивности окисления металлов,  [c.122]

Обнаружение стресс-коррозионных повреждений стенок газопроводов, зарождающихся на концентраторах напряжений, обусловленных различными механизмами - механическими (задиры поверхности металла, наклепы и остаточная деформация металла стенок труб ) и химическими (коррозия металла в среде почвенного электролита, зародыши трещин - дефекты структуры металла) -является актуальной задачей предотвращения повреждений транспортных газовых магистралей, эксплуатирующихся в экстремальных условиях. Для решения такой задачи ЗАО МНПО "Спектр" был создан магнитный дефектоскоп высокого разрешения КОД -4М-1420 с использованием поперечного намагничивания стенок газопровода и съема информации о состоянии металла стенок путем измерения распределения магнитного поля вблизи контролируемой внутренней поверхности трубы. Контроль осуществляется с высоким разрешением, достаточным для анализа параметров магнитного поля рассеивания дефектов, с целью классификации дефектов и определения их геометрических параметров. Точность определения характеристик дефектов важна для дальнейшего определения остаточного ресурса газопровода.  [c.73]

Была установлена несколько повышенная реакционная способность нагартованного металла к окислению по сравнению с тем же материалом в предварительно отожженном состоянии. Однако подобное влияние, определяемое главным образом накоплением энергии деформации в металле или отсутствием ориентационного соответствия между деформированной структурой и окислом, относится лишь к начальным стадиям окисления. Как только окисная пленка теряет ориентацию по отношению к структуре металла, процесс окисления начинает контролироваться торможением диффузии в рекристаллизованной окисной пленке, структура которой уже не зависит от предварительной деформации металла, и, следовательно, установившаяся в этом случае скорость коррозии почти не будет отличаться для отожженного и деформированного состояний металла. Наличие в металле растягивающих напряжений будет увеличивать вероятность развития местной (межкристаллитной) коррозии, хотя такая тенденция в условиях газовой (химической) коррозии  [c.102]


Ско юсть газовой коррозии металлов обычно возрастает при температурах выше 200-- 300 С. При температурах от 100—120 до 200—300° С газы, даже содержащие пары воды, не опасны, если при этом не происходит конденсация жидкости н, следовательно, не могут протекать электрохимические процессы. Даже такие агрессивные газы, к ак хло() и х.лиристый водород, при указанных температурах вызывают лишь слабую коррозию уч леро-дистой стали. Выше 200—300° С химическая активность газов еилыю возрастает хлор начинает действовать на железные  [c.148]

Весовой метод определения скорости коррозии наиболее распространен в технике исследования химического зопротивления металлов. особенно в тех случаях, если коррозия,является общей я равномерной и глубина проникновения коррозии прямо пропорциональна времени испытания. Он основан на оценке изменения массы образцов после воздействия агрессивной среды. Если продукты коррозии трудно удаляются с поверхности образца, что обычно наблюдается при высокотемпературной газовой коррозии, то определяют прибыль его массы. Зная химический состав образующихся продуктов коррозии, можно достаточно точно определить количество прокорродировавшего металла. Если продукты коррозии имеют слабое сцепление с металлом. то их удаляют, и скорость коррозии опрехеляют по убыли массы образца.  [c.6]

Разрушение материалов в атмосфере происходит в результате физико-химических процессов, развивающихся-на границе твердая фаза — газовая среда. При этом, нередко фронт реакции продвигается в глубь твердого-тела, что приводит к изменению объемных boh tbi материалов. Коррозия металлов, старение полимеров органических покрытий, деструкция неорганических материалов обусловлены наличием в атмосфере химических веществ с высокой термодинамической активностью. Взаимодействие этих веществ с материалами сопровождается уменьшением свободной энергии системы и протекает самопроизвольно.  [c.7]

Химическая коррозия — газовая (в сухом воздухе) тп /йМс(т) г 0г(г)- /Ме, 0, 2 где т — число атомов металла п — окислительное число (валентность) металла 2-3 2Fe Ь О2 — РвгОз 4 2-3 2А1 + О2—>АЬОз 4 2Nb -Ь - Ог NbsOs 4  [c.117]

Существуют различные показатели коррозии (табл. 3), которые используются с учетом вида коррозии, характера повреждений и специфических требований данной отрасли промышленности к металлу. Скорость общей равномерной коррозии металлов и сплавов (химической и электрохимической) поддается оценке путем наблюдения за ростом и разрушением пленок из продуктов коррозии (гравиметрические, оптические, электрические методы испытаний) (рис. 5). Используются весовой (/(в) и глубинный (П) показатели скорости коррозии н реже — объемно-газовый показатель (см. табл. 3). Для оценки скорости развития локальных коррозионных повреждений применяют разнообразные методы испытаний. Широко используется механический показатель, а также электрический и резонансный показатели. Существуют и другие показатели. Оценивают, например, время до появления выраженной трещины в напряженном металле, контактирующем с агрессивной средой. Проводятся замеры контактных токов между различными металлами в жидких электролитах с целью определения скорости контактной коррозии. Широко применяются способы микрографического обследования образцов после коррозионных испытаний с промером глубины питтин-гов.  [c.125]

Окисление металлов в газовых средах (газовая коррозия) относится к наиболее распространеннрму в практике виду химической коррозии. Газовая коррозия сплавов представляет сложный и многостадийный кристаллохимический процесс, который изучен еще недостаточно. Круг вопросов, характеризующих этот процесс, настолько широк и многообразен, что вся проблема окисления пока делится на составные части адсорбция, зародышеобразование, образование тонких окисных пленок, рост толстых окисных слоев (окалины), адгезия, диффузионная проницаемость окислов, пластичность окалины и т.д.  [c.9]

Наиболее распространенным является процесс взаимодействия металлов с кислородом, хотя известны и другие виды газовой коррозии (сернистая, водбродная и др.). Химическая коррозия, имеющая место в этом случае, развивается в кислородсодержащих газах иа воздухе, в углекислом газе, водяном паре, чистом кислороде и др. Движущей силой газовой коррозии является термодинамическая неустойчивость металлов в газовых средах при данных внешних условиях давлении, температуре, составе среды и др. При этом на поверхности металла чаще всего образуется оксидная пленка. От структуры, состава и свойств этих пленок зависит скорость процесса газовой коррозии. Защитные свойства оксидных пленок в значительной степени определяются их сплошностью, которая зависит от отношения моля оксида к массе атома металла. Хорошо защищают металл от дальнейшего окисления только плотные оксиды, если отношение объемов находится S пределах 1,0—2,5 [28].  [c.407]


Смотреть страницы где упоминается термин Газовая (химическая) коррозия металлов : [c.148]    [c.21]    [c.132]    [c.6]    [c.277]    [c.28]   
Коррозионная стойкость материалов (1975) -- [ c.0 ]



ПОИСК



433 (фиг. 9.2). 464 (фиг химической коррозии (см. Коррозия)

Газовая (химическая) коррозия металлов в сернистых газах

Газовая (химическая) коррозия металлов кинетика процесса

Газовая коррозия металлов

Кинетика газовой (химической) коррозии металлов

Коррозия газовая

Коррозия металлов

Коррозия химическая

Коррозия химическая — См. Химическая

Металлы химическая

ФИЗИКО-ХИМИЧЕСКИЕ ЗАКОНОМЕРНОСТИ ГАЗОВОЙ КОРРОЗИИ МЕТАЛЛОВ Термодинамическая вероятность образования продуктов окисления на поверхности металла

Химическая (газовая) коррозия металлов и методы защиты от нее



© 2025 Mash-xxl.info Реклама на сайте