Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аустенитно-ферритные стали коррозионная стойкость

Свойства аустенитно-ферритных сталей зависят от соотношения количества феррита и аустенита (при нагреве до температур термической обработки). Если больше феррита в структуре, то сталь при нагреве выше 850° С обладает большими крупнозернистостью и хрупкостью (не устраняющимися последующей термической обработкой) и пониженной коррозионной стойкостью. Горячую механическую обработку полуферритных сталей следует заканчивать при наиболее низких температурах для получения мелкозернистости, поскольку  [c.267]


При нагреве аустенитно-ферритных сталей до 760—800° С выравнивается концентрация Сг в твердом растворе и улучшается коррозионная стойкость.  [c.267]

При сварке сталей мартенситного, мартенсит-но-ферритного и ферритного классов (высокохромистых сталей) свойства сварных соединений могут быть удовлетворительными, если химический состав металла шва соответствует химическому составу свариваемого металла, а после сварки используется высокий отпуск. При сварке с использованием подогрева и последующей термической обработке применяют присадочный металл из аустенитной или аустенитно-ферритной стали. Использование таких материалов не обеспечивает равнопрочности шва и основного металла, но коррозионная стойкость и жаростойкость шва мало отличаются от соответствующих свойств основного металла.  [c.334]

В результате изучения стойкости аустенитных и аустенито-ферритных сталей в азотной кислоте выявилось, что режимы термической обработки и равномерность распределения хрома в стали оказывают большое влияние. Когда хром в аустенитной и ферритной фазах находится в твердом растворе и в одинаковых количествах, то стали обоих типов практически имеют одинаковую коррозионную стойкость в окислительных средах. При закалке с 1000—1100° С в воде в аустенитных и аустенитно-ферритных сталях хром остается в твердых растворах аустенита и феррита, поэтому эти стали, если они близки по своему химическому составу, обладают практически одинаковой коррозионной стойкостью.  [c.573]

Механические свойства аустенитных сталей по некоторым показателям ниже, чем у мартенситных и ферритных, но коррозионная стойкость первых выще.  [c.24]

При исследовании устойчивости в различных почвах установлена высокая коррозионная стойкость сталей, как ферритных так и аустенитных, значительно превосходящая коррозионную стойкость других широко используемых металлов за исключением титана.  [c.181]

Стойкость к сероводородному коррозионному растрескиванию аустенитных и аустенитно-ферритных сталей и сплавов на основе никеля и титана  [c.98]

Испытания на коррозию выполняют для определения коррозионной стойкости металла сварного соединения или отдельных его зон при работе в различных средах. Существуют испытания на общую и местную межкристаллитную) коррозию. В результате общей коррозии металл растворяется в агрессивной среде. Существует равномерная и неравномерная коррозия. В первом случае основной металл и металл шва разрушаются с одинаковой скоростью, а во втором — металл шва разрушается быстрее или в некоторых местах быстрее разрушается основной металл и металл по линии сплавления. Межкристаллитная коррозия возникает в зоне термического влияния по линии сплавления основного металла с металлом шва и в металле шва под действием нагрева металла отдельных зон сварного шва до определенных температур. Общая коррозия характерна для углеродистых и низколегированных сталей, а межкристаллитная — для аустенитных и аустенитно-ферритных сталей.  [c.253]


К аустенитно-ферритным сталям относят высоколегированные стали," основу структуры которых составляют две фазы аустенит и феррит. Количество каждой из них обычно 40... 60 %. В связи с этим признаком за рубежом такие стали называют дуплексными. Аусте-нитно-ферритные стали были разработаны как заменители хромоникелевых сталей аустенитного класса. Коррозионная стойкость этих сталей во многих агрессивных средах обеспечивается высоким содержанием хрома как правило, >20 %.  [c.75]

Сведения о коррозионной стойкости аустенитно-ферритных сталей  [c.77]

Аустенитные стали заменяют аустенитно-ферритными при приблизительно одинаковой коррозионной стойкости для обеспечения повышенного сопротивления растрескиванию, так как в аустенитно-ферритных сталях содержится 50...60 % феррита. В экстремальных случаях вместо обычных коррозионно-стойких сталей используют стали с высоким содержанием никеля (около 40 %) или коррозионно-стойкие никелевые сплавы, не подверженные растрескиванию.  [c.237]

Холодная деформация любой нержавеющей стали обычно оказывает меньшее влияние на стойкость к общей коррозии, если при обработке не достигается температура, достаточная для протекания диффузионных процессов. Фазовые изменения, вызываемые холодной обработкой метастабильных аустенитных сплавов, не сопровождаются существенным изменением коррозионной стойкости . К тому же закаленная аустенитная нержавеющая сталь (с гранецентрированной кубической решеткой), содержащая 18 % Сг и 8 % Ni, имеет примерно такую же коррозионную стойкость, как закаленная ферритная нержавеющая сталь (с объемно-центрированной кубической решеткой), которая содержит такое же количество хрома и никеля, но меньше углерода и азота [11]. Однако, если аналогичный сплав, содержащий смесь аустенита и феррита, кратковременно нагревать при 600 °С, то возникает разница в химическом составе двух фаз и образуются гальванические пары, ускоряющие коррозию. Иными словами, различие в составе, независимо от того, чем оно вызвано, больше влияет на коррозионное поведение, чем структурные изменения в гомогенном сплаве. По-видимому, это можно отнести в целом к металлам и сплавам.  [c.302]

Для изучения коррозионной стойкости сталей аустенитного к ферритного классов иногда используется метод увеличения массы образцов. Этот метод позволяет определить показатели коррозии металла при его окислении лишь в газовой атмосфере либо в слое отложений, которые химически не воздействуют со средой. Метод заключается в определении увеличения массы образца из.-за образования оксидов. При этом для получения данных па уменьшению массы металла в ходе коррозии необходимо в предварительных тарировочных опытах установить соотношение увеличения массы образца к уменьшению массы чистого металла (беа оксидного слоя).  [c.115]

Аустенитная и ферритная структуры стали часто трудно выявляются вследствие сильной деформации слоев. Кроме того, они частично пассивируются и (или) имеют повышенную коррозионную стойкость вследствие проявления эффекта граничной концентрации. Пассивация представляет собой поверхностное явление, при котором различные металлы покрываются тонкой окисной  [c.108]

Аустенитные стали. В отличие от ферритных и мартенситных. хромистых сталей аустенитные коррозионно-стойкие стали обладают более высокими технологическими свойствами. Основными легирующими элементами являются хром и никель, причем никель полностью или частично может быть заменен марганцем. Оба легирующих элемента являются аустенитообразующими. Дополнительное повышение коррозионной стойкости достигается путем введения добавок молибдена и в некоторых случаях—меди.  [c.33]

В ряде случаев устойчивость конструкций против КР можно увеличить, применяя вместо аустенитных ферритные коррозионно-стойкие стали. Это возможно в условиях, где не проявляются отрицательные свойства этих сталей (склонность к охрупчиванию, пониженная общая коррозионная стойкость). При подборе сталей необходим как строго дифференцированный подход к составу с точки зрения влияния легирующих элементов, так и к их взаимному влиянию друг на друга в комплексе в отношении к КР.  [c.76]


При высоких температурах (200—700 °С) и давлении до 20 МПа высокой коррозионной стойкостью обладают нержавеющие стали аустенитного, мартенситного и ферритного классов, а также ряд сплавов на основе никеля (табл. 18.1, рис. 18.1, 18.2).  [c.274]

Как правило, коррозионная стойкость трех типов нержавеющих сталей, а именно мартенситной, ферритной и аустенитной, в морских атмосферах оценивается от хорошей до отличной . Аустенитным сортам часто отдается предпочтение за более высокую стойкость к коррозии пятнами. Сначала на сталп возникают очень тонкие пятна желтого цвета, которые через несколько лет могут приобретать красноватый оттенок. Эта ржавчина легко удаляется полировальной пастой.  [c.57]

В Швеции было исследовано коррозионное поведение 17 различных сплавов, применяемых в трубчатых теплообменниках. Испытания проводили в чистой воде Балтийского моря (содержание хлоридов 4 мг/кг) при температуре 50 С и скорости потока от 2 до 5 м/с. Продолжительность экспозиции 15000 ч [240]. В этих условиях абсолютной коррозионной стойкостью обладали титан. Сплав 825 и молибденовые аустенитные нержавеющие стали — эти металлы не корродировали даже в щелях сложной формы. Межкристаллитная коррозия наблюдалась на примыкающих к сварным швам участках ферритных молибденовых нержавеющих сталей, но позже было установлено, что эти образцы перед сваркой случайно подверглись цементации. Алюминиевые и некоторые медные сплавы при использованных скоростях потока подвергались эрозионной коррозии. Сплав 70—30 Си—Ni—Fe сохранял стойкость при скорости воды от 4 до 5 м/с.  [c.201]

Классификация 9 Хромоникелевые стали — Диаграммы состояния тронные 29 — Диаграммы структурные 31, 32 — Коррозионная стойкость 33, 34 — Механические свойства — Зависимость от влияющих факторов 30, 31 — Структура и склонность к охрупчиванию 32 Хромоникелевые стали аустенитные и аустенитно-ферритные 9, 22—28  [c.444]

Методы испытания на межкристаллитную коррозионно-стойкость феррит-ных, аустенитно-мартенситных, аустенитно-ферритных и аустенитных коррозионно-стойких сталей и сплавов установлены ГОСТ 6032—75, алюминия и алюминиевых сплавов — ГОСТ 9.002—72.  [c.11]

Хромоникелевые 96, 100, 107, 108, 110, 114, 120, 144, 150, 179 хромоникельмолибденовые 96, 99 100, 107, 120, 183 хромомарганцевые 194 хромоникельмарганцевые 193 Аустенитно-мартенситные, высокопрочные стали 145, 208 Аустенитно-ферритные стали коррозионная стойкость 96, 107,  [c.355]

Высокохромистые двухфазные аустенитно-ферритные стали обладают высокой коррозионной стойкостью, коррозионно-усталостной про шостью. хорошими механическими характеристиками. Благодаря высокой стойкости к коррозии под действием кавитации из этих сталей целесообразно изготовлять детали насосов высокой подачи для перекачки морской воды. Двухфазные аустенигно-ферритные нержавеющие стали находят широкое применение в химической и нефтехимической промышленности в качестве коррозионно-стойких конструкционных материалов. Стойкость к коррозии в морской воде этих сталей сравнима со стойкостью аустенитных сталей, т.е. достаточно высока, а сравнивае-мость и обрабатываемость лучше.  [c.20]

Коррозионно-стойкие сплавы на железоникелевой и никелевой основе. Аустенитные (аустенитно-ферритные) стали не обеспечи--вают достаточно высокой коррозионной стойкости в таких средах, как серная и соляная кислоты. В этих случаях используют сплавы на желе оникелевой основе, например сплав 04ХН40МДТЮ (табл. 11), имеющий после закалки от 1050—1100°С и старения при 650—700 °С структуру аустенит и интерметаллидную у -фазу типа П1з (Т1, А1). Сплав предназначен для работы при больших нагрузках в растворах серной кислоты.  [c.298]

Испытания по определению коррозионной стойкости образцов, вырезанных из стали 1Х18Н9Т с 0,12—0,14% С, 18% Сг, 9—10% Ni с 0,52—0,7% Ti (от края и середины полосы), в сильно агрессивных средах, 65%-НОЙ кипящей азотной, 10%-ной кипящей серной и 3,6%-ной соляной кислотах при комнатных температурах [516] показали, что с увеличением количества феррита в стали коррозионная стойкость в указанных средах несколько понижается. Потери веса образцов различных сталей с 12—21% фер-ритной составляющей в 2—2,5 раза выше, чем стали, в которой феррит имеется в количестве 1—8%. Разница между краем и серединой полосы тем выше, чем больше феррита в стали и чем больше разница в его содержании между этими зонами. Аналогичная неравномерность была обнаружена А. А. Бабаковым на трубной заготовке [282]. Повторный нагрев и прокатка полосовой стали на лист уменьшает разницу в структурной неоднородности и способствует более равномерному распределению фаз. При достаточно равномерном распределении ферритной составляющей не обнаружено разницы в коррозионной стойкости стали 1Х18Н9Т в азотной кислоте и ряде других сред. В этом случае не обнаруживается разницы в коррозионной стойкости чисто аустенитной стали и аустенито-ферритной [193, 282].  [c.330]

Для ферритно-мартенситных сталей целью термической обработки является получение отпуш,енного мартенсита и снятие остаточных напряжений. Термическая обработка ферритных сталей чащ,е всего не проводится, а если и проводится, то для снижения уровня остаточных напряжений. У аустенитных и аустенитно-ферритных сталей задачей термической обработки может быть восстановление стойкости против межкристаллитной коррозии в ЗТВ (коррозионно-стойкие стали), пластичности и вязкости, а также предотвраш,ение околошовных разрушений при эксплуатации (жаропрочные стали).  [c.418]

Указанное выше преимущество двухфазных аустенитно-ферритных сталей — возможность повышения содержания хрома — способствует тому, что этот класс коррозионно-стойких сталей продолжает развиваться и совершенствоваться. Если учесть, что двухфазные стали обладают более высокой стойкостью против МКК и коррозионного растрескивания, чем аустенитные стали, можно ожидать, что в ближайшее время в этом классе появятся весьма интересные марки стали, обладающие благоприятным сочетанием прочностных, технологических и-зксплуа-таци01Н1ых свойств.  [c.676]


В табл. 8.11 приводятся результаты испытаний различных нержавеющих сталей на их стойкость к коррозионному растрескиванию в средах, имитирующих условия установок сепарации агрес-сивного природного газа. Наименьшую стойкость к сероводородному разрушению проявила сталь Х18Н10Т, растрескавшаяся через 140 ч. Двухфазная аустенитно-ферритная сталь с пониженным со-  [c.276]

Б химической промышленности дисперсионно твердеющие стали в большей мере используются для литья. Так, например, литые аустенитно-ферритные стали типа 07Х20Н9СЗМЗДЗ(А, Б), а также стали с присадкой бериллия благодаря высокой коррозионной стойкости используются там, где до сих пор применялись только  [c.38]

В ряде работ было показано, что в аустенитно-ферритных сталях, находящихся в щелочных средах, преимущественному коррозионному разрушению подвергается ферритная структура. Отмеченное подтверждается результатами работы [9], в которой показано влияние погонной энергии на коррозионную стойкость сварных соединений стали типа 10X21Н5Т, выполненных дуговой сваркой под флюсом. В качестве сварочных материалов использовали проволоку 5СВ-04Х19Н10Б (аустенитный вариант) и 5Св-10Х21Н5Т (аустенитно-ферритный вариант). С увеличением погонной энергии от 320 до 3700 кДж/м скорость коррозии сварных соединений при аустенитном варианте в 40 %-ном водном растворе едкого натра возрастает в 6 раз. Это объясняется, с одной стороны, увеличением содержания ферритной фазы в металле околошовного участка ЗТВ, склонной к растворению в коррозион-но-активной среде, а с другой — возрастанием тока коррозии в макросистеме аустенитный шов — аустенитно-ферритный основной металл из-за наличия разности потенциалов между ними.  [c.281]

По сравнению с аустенитными сталями аустенитно-ферритные стали дешевле, так как содержат меньше никеля. Аустенитно-феррит-ные стали характериззтотся достаточно высо- кой коррозионной стойкостью (близкой к стойкости сталей типа 12Х18Н10Т) во многих агрессивных промышленных средах. Аустенит-  [c.242]

Аустенитно ферритные стали имеют относительно высокие пределы те кучести и прочности при удовлетворительных пластичности и ударной вяз кости, а также высокую коррозионную стойкость и хорошую свариваемость Это позволяет сократить удельный расход металла при изготовлении химической аппаратуры, рассчитываемой иа прочность, благодаря уменьше  [c.282]

Структурно - избирательную коррозию можно объяснить разностью электродных потенциалов аустенита и феррита в двухфазном металле, а также разностью поверхностей структурных составляющих в местах контактирования с агрессивной средой. Электродные потенциалы между структурными составляющими в агрессивной среде могут отличаться при разном содержании в них легирующих элементов, обусловливающих коррозионную стойкость металла в данной среде. В окислительных средах (азотная кислота) пассивирующая способность и, следовательно, коррозионная стойкость аустенитной и ферритной фаз металла зависят главным образом от содержания Сг, а в неокислительных (растворах серной кислоты) от содержания N1 и Мо. За ухудшение коррозионной стойкости аустеиитио-ферритного металла всегда ответственна аустенитная фаза. Кроме того, в соединениях аустенитно-ферритных сталей всегда имеются участки, отличающиеся по своему электродному потенциалу. Это шов, ЗТВ, основной металл. Такое соединение в электролите представляет собой многоэлектродную систему с несколькими катодами и анодами. Преимущественному растворению в электролите будет подвергаться та часть системы, которая в данном электролите будет иметь наиболее отрицательный электродный потенциал, т. е. будет катодом.  [c.288]

Установлено отрицательное влияние кремния и ванадия в сварочном шве на коррозионную стойкость в окислительных средах сварных соединений из аустенитно-ферритных сталей [4]. Таким образом, при выборе присадочного материала необходимо стремиться обеспечить равенство не только механических свойств шва и основного металла и стойкость шва против межкристаллитной коррозии, но и равенство общей коррозионной стойкости металла всех зон сварного соединения. Необходимо учитывать влияние карбидообразующих элементов (Т1 и МЬ) на свойства швов в соединениях аустенитно-ферритных сталей, так как для обеспечения стойкости против межкристаллитной коррозии при содержании углерода >0,07 % необходимы стабилизаторы (карбидообразующие элементы). Сталь 08Х22Н6Т стойка в азотной кислоте 65 %-ной концентрации до температуры 50 °С, в 56 %-ной до температуры 70 °С, в 30 %-ной до температуры кипения. Сталь 08Х21Н6М2Т стойка в муравьиной кислоте независимо от концентрации при температурах до 60 °С, в 30 %-ной кипящей и в 85°/о-ной фосфорной кислоте при Г 80°С, в 10 %-ной серной кислоте.  [c.290]

Первые два сплава иногда легируют титаном или ниобием для повышения допустимого содержания углерода и азота. Все эти сплавы можно закалять от 925 °С без ухудшения коррозионных свойств. Благодаря тому, что они сохраняют пассивность в агрессивных средах, их коррозионная стойкость обычно выше, чем у обычных ферритных и некоторых аустенитных нержавеющих сталей, представленных в табл. 18.2. Они более устойчивы, например в растворах Na l, HNO3 и различных органических кислот. Если по какой-либо причине происходит локальная или общая депассивация этих сталей, то они корродируют с большей скоростью, чем активированные никельсодержащие аустенитные нержавеющие стали, имеющие в своем составе такие же количества хрома и молибдена [8, 9].  [c.301]

С целью экономии дефицитного никеля часть его может быть заменена марганцем или азотом. При этом Структура стали может сохраниться аустенитной либо перейти в аустенитно-ферритный или аустенитно-мартенситный класс. Экономнолегированные хромоникелевые стали по коррозионной стойкости не уступают сталям типа 18—8 и могут полноценно их заменять.  [c.32]

Из высоколегированных сталей аустенитная сталь 12Х18Н12Т имеет более высокую коррозионную стойкость, чем ферритно-мартенситная сталь 12Х12В2МФ. Несмотря на более высокую коррозионную стойкость этих сталей в сравнении с перлитными сталями, глубина коррозии у них в сравнении с коррозией в воздухе больше.  [c.134]

Ферритно-мартенситная сталь 12Х12В2МФ испытывалась как в лабораторных (т=5000 ч), так и в промышленных условиях с максимальной продолжительностью 16 тыс. ч. Лабораторные испытания показали примерно в 3—4 раза большую коррозионную стойкость, чем промышленные испытания. Приведенная в табл. 4.8 формула расчета глубины коррозии стали 12Х12В2МФ выражает зависимость с учетом результатов промышленных испытаний на коррозионную стойкость. В таких же условиях испытывалась и аустенитная сталь 12Х18Н12Т. Максимальная продолжительность промышленных испытаний при этом 69 тыс. ч. Полученная в лабораторных условиях глубина коррозии является примерно в 8—10 раз ниже, чем установленная в промышленных испытаниях.  [c.165]

Марганец, как н никель, относится к аустенитообразующим элементам, понижающим температуру превращения и расширяющим область -твердого раствора. При введении марганца в желеэохроыистые сплавы, содержащие 18% Сг, увеличивается область сталей с двухфазной аустенито-ферритной структурой, а при содержании 12—14% Сг, 0,1% С и присадке Мп можно получить аустенитные стали. С целью обеспечения более высокой коррозионной стойкости стали повышают содержание хрома (выше 15%), а для получе-  [c.36]



Смотреть страницы где упоминается термин Аустенитно-ферритные стали коррозионная стойкость : [c.62]    [c.145]    [c.203]    [c.243]    [c.276]    [c.220]    [c.1]    [c.124]    [c.130]    [c.146]    [c.328]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.96 , c.107 , c.145 , c.202 , c.207 ]



ПОИСК



Аустенитные стали

Стали аустенитно-ферритны

Стали аустенитно-ферритные 75 - Коррозионная стойкость 77 - Механические свойства 77 - Сварочные материалы 78 Способы сварки 78 - Применение 79 Химический состав

Стали коррозионная стойкость

Стойкость коррозионная

Ферритные стали



© 2025 Mash-xxl.info Реклама на сайте