Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозионное сероводородное

РД 26-02-62-88. Нормы и методы расчета на прочность элементов сосудов и аппаратов, работающих под давлением сред, вызывающих сероводородное коррозионное растрескивание. - М. ВНИИНЕФТЕМАШ, 1988.  [c.270]

Для аппаратов, в которых производится переработка горячих сероводородных и окислительных серосодержащих сред, а также работающих в среде водорода и растворов хлоридов, основными характеристиками, определяющими работоспособность аппарата, становятся физико-химические свойства рабочей среды и металла, степень защищенности аппарата от коррозии, особенно контактирующей с агрессивной средой. Основным видом разрушения таких аппаратов является внутренняя коррозия. В условиях воздействия сероводородсодержащих продуктов имеют место практически все основные виды разрушений локализованной (язвенное, точечное и коррозионное растрескивание) и общей (равномерная и неравномерная) коррозии. Явление повышения коррозионного повреждения металла под действием механических напряжений принято называть механохимическим эффектом (МХЭ). Как будет показано далее в следующем разделе, наиболее сильно МХЭ проявляется в режиме нестационарного нагружения аппарата, которое реализуется в локальных областях перенапряженного металла при повторно-статических нагрузках.  [c.276]


Изучение опыта эксплуатации ОНГКМ позволяет оценить причины и масштаб проблем, вызываемых сероводородной коррозией металлического оборудования. С другой стороны, надежность оборудования и трубопроводов зависит не только от коррозионного фактора, но и от качества их проектирования, строительства и эксплуатации. В связи с этим важной научно-технической задачей является выявление факторов, оказывающих определяющее влияние на работоспособность оборудования и трубопроводов ОНГКМ, в частности определение роли коррозии в снижении их надежности.  [c.18]

Основное количество повреждений (247) наблюдалось в течение первых шести лет эксплуатации. В 1971-1973 гг. оно непрерывно возрастало. В следующие три года несколько снизилось, но все же находилось на недопустимо высоком уровне. Затем количество повреждений снизилось до минимума и держалось на таком уровне до 1995 г. В последние годы начали поступать сведения об одиночных коррозионных повреждениях трубопровода, причина возникновения которых требует выяснения. Большинство повреждений имело вид нераскрывшихся коррозионных трещин различной длины (20-150 мм) на продольных заводских сварных швах поблизости от кольцевых монтажных швов или непосредственно на них. Известно, что с момента ввода в эксплуатацию по апрель 1972 г. по трубопроводу Оренбург-Заинск транспортировался неингибированный газ с содержанием Н25 до 2,5% об., который мог вызвать сероводородную коррозию металла, проявляющуюся в разных формах — от общей равномерной коррозии до водородного расслоения и сероводородного растрескивания.  [c.62]

Таким образом, отказы трубопроводов и оборудования ОНГКМ в большинстве случаев обусловлены отсутствием эффективного ингибирования в условиях воздействия сероводородсодержащих сред на металлоконструкции из коррозионно нестойких сплавов, содержащих дефекты. Твердые структурные составляющие, неметаллические включения (сульфиды, оксисульфиды и т. п.) и расслоения являются очагами возникновения водородного растрескивания металла. Поверхностные дефекты (риски, волосовины, раскатанные загрязнения) способствуют появлению и развитию сероводородного растрескивания. Очагами сероводородного растрескивания сварных соединений трубопроводов и деталей оборудования являются так-  [c.66]

Как известно, в зависимости от соотношения парциальных давлений кислых компонентов в системе характер коррозионных процессов существенно меняется. При повышении давления сероводорода увеличиваются количество проникающего в сталь водорода и скорость общей коррозии. При росте парциального давления СО2 возрастает скорость общей коррозии стали [44-46]. Язвенная коррозия развивается преимущественно по нижней образующей труб в местах их контакта с водной фазой. Сопротивляемость сталей сероводородной коррозии существенно зависит от температуры. Минимальная стойкость стали наблюдается при температурах от плюс 18 до плюс 25 С [44].  [c.110]


Следовательно, легирование алюминиевого покрытия титаном и кремнием, способствующими появлению эффективных катодных присадок, позволяет получить покрытие на основе алюминия, которое характеризуется высокой коррозионной стойкостью в сероводородных средах, а также в присутствии ионов хлора.  [c.94]

Однако сочетание воды в любом виде с H S представляет большую опасность. Известны случаи, когда обсадные трубы в присутствии HjS были разрушены в течение 2 ч. Коррозионно-активной в условиях добычи сырого газа считается среда, ограниченная следующими параметрами парциальное давление сероводорода > 0,3 МПа, температура Г 338 К и рН<10.-В среде с такими параметрами развиваются все три коррозионных процесса. Невыполнение хотя бы одного из ограничений практически устраняет развитие самого опасного процесса — сероводородного растрескивания. С увеличением парциального давления активность сероводородсодержащих сред повышается, усиливаются процессы общей коррозии, однако максимум процесса наводороживания находится в области 293—303 К. Снижение pH усиливает коррозионную активность среды.  [c.144]

Случаи коррозионного и сероводородного растрескивания нефтепроводов наблюдаются редко, что, вероятно, связано с невысокими давлениями в трубопроводах (обычно 1—1,5 МПа) и применением для их изготовления низкоуглеродистых пластичных сталей.  [c.182]

Полученные результаты подтверждают предположение о том, что эффективными ингибиторами кислотной сероводородной коррозии стали могут быть соединения, спосо -ные генерировать в коррозионной среде формальдегид. Очевидно, что степень превращения исходного соединения должна быть невелика, иначе будет происходить быстрое истощение ингибитора в растворе и потеря эффективности. С другой стороны, если эта скорость очень мала, то возникающие количества формальдегида могут оставаться меньше защитной концентрации. В растворах эффективных  [c.85]

Ионы водорода в хоДе катодного процесса восстанавливаются на поверхности стали, часть из них поступает в металл и способствует его коррозионно-механическому разрушению. Установлено что при сероводородном растрескивании сталей основная роль принадлежит водородному охрупчиванию [8].  [c.43]

Высокотемпературная сероводородная коррозия протекает при эксплуатации углеродистых и хромистых сталей с низким содержанием хрома (6%) в процессе гидрирования и дегидрирования нефти при высоком давлении и высоких температурах. Скорость коррозионного разрушения зависит от состава сталей, температуры, давления и концентрации сероводорода.  [c.87]

Углекислотная коррозия характеризуется обычно язвенными разрушениями, а сероводородная — наводораживанием металла и коррозионным растрескиванием.  [c.42]

В хлоридных, сероводородных, щелочных, аммиачных и некоторых других средах коррозионные потери металла также не всегда характеризуют его работоспособность — при определенных условиях эксплуатации в таких средах возможно растрескивание металла. Коррозионное растрескивание рассматриваемого типа явление очень сложное. Имеющаяся по этим вопросам количественная информация отрывочна, разрозненна и часто противоречива, Далек от полной ясности даже перечень факторов, определяющих интенсивность этого опасного явления. В некоторых случаях основным является уровень напряжений, в других — присутствие окислительных примесей в среде, в третьих — наличие ватерлинии, в четвертых — состояние металла. Хотя сейчас еще невозможно дать систематизированные рекомендации по условиям безопасного применения материалов в таких средах, сочтено все же полезным привести критически составленные сводки наиболее надежных данных о склонности материалов к коррозионному  [c.81]

Это явление отмечено в металле нефтегазового оборудования на месторождениях, содержащих коррозионно-агрессивные компоненты — сероводород и диоксид углерода (углекислый газ) [2.1 ], в напряженных элементах строительных конструкций, работающих в атмосфере промышленных городов с повышенной кислотностью дождевых бсадков [2.21, и др. Преждевременное разрушение оборудования в среде сернистого газа связано с коррозионным сероводородным растрескиванием (СР) и вспучиванием стали, вызванными водородом (ВР). Активный (атомарный) водород, проникающий в сталь, образуется в данном случае в результате электрохимических процессов, идущих на поверхности стали при участии сероводорода, углекислого газа и влаги.  [c.139]


На основе имеющихся сведений по стойкости к общей коррозии и опытных данных по коррозионному сероводородному растрескиванию в содержащих H2S водных растворах и 97% растворах ДЭГ сталь Х17Н13МЗТ можно рассматривать как один из наиболее надежных конструкционных материалов для блоков абсорбции и регенерации ДЭГ при температуре не выше 50 °С.  [c.286]

Для среднелегированных сталей повьппенных прочности и вязкости со структурой дисперсного сорбита после термического улучшения характерно коррозионное (сероводородное или водородное) расгрескивание под напряжением.  [c.251]

С нсвышеш е,м температуры опасность сероводородной коррозии углеродистых сталей значительно увеличивается уже при 300° С железо подвергается сильной коррозии. Легирование сталей не менее чем 12% Сг повышает их коррозионную стойкость (рис. 121).  [c.154]

Исследованиями ЮЖНИИГИПРОГАЗа установлено, что в условиях минимального коррозионного воздействия эксплуатируются межблочные коммуникации емкость Е-01-выходной коллектор У КП Г при эффективной низкотемпературной сепарации. Все остальные линии эксплуатируются в присутствии электролита. Согласно рис. 3, все межблочные коммуникации, линии обвязки и шлейфы скважин-доноров подвержены сероводородному коррозионному растрескиванию. Прогнозируемая скорость общей коррозии составляет 0,1-0,3 мм/год. В диапазоне рабочих температур скорость общей коррозии металла относительно невысока, а его стойкость к сероводородному растрескиванию также является низкой (рис. 3).  [c.13]

Сероводородное растрескивание металла муфт насоснокомпрессорных труб отечественной и импортной поставок происходит также при отсутствии эффективного ингибирования под действием коррозионной среды и высоких растягивающих напряжений, возникающих преимущественно в зоне концентраторов напряжений при затяжке муфт.  [c.21]

Разрушение монтажного сварного стыка 0720x22 мм газопровода неочищенного газа УКПГ-9-ОГПЗ имело место по истечении девяти месяцев эксплуатации. В сварном стыке были отмечены смещение кромок до 7 мм на расстоянии 2/3 периметра трубы и непровар до 10 мм в том же месте. От непровара зародилась коррозионная трещина, которая в ходе своего дальнейшего развития на 20 мм вышла на основной металл при ширине раскрытия кромок до 0,5 мм. Сероводородное растрескивание другого сварного стыка этого же газопровода (рис. 12а) также было обусловлено дефектами сварного соединения смещением кромок (более 2 мм) в сочетании с непроваром в корне шва глубиной более 2 мм на расстоянии 500 мм и порами в корневом шве.  [c.36]

Примером сероводородного растрескивания деталей газопромыслового оборудования является хрупкое разрушение пластин компенсатора насоса 9МГР на промстоках. Микроструктура металла пластин ферритная с небольшим количеством перлита, твердость составляет 140 НВ, коррозионные трещины развивались по границам зерен. Произошедшее после семи месяцев эксплуатации водородное растрескивание скалки насоса ХТР-1,6/200, который перекачивает ингибитор КИГИК, приготовленный на основе метанола, обусловлено наличием большого количества мартенситной составляющей в приповерхностном слое металла скалки, твердость которого достигает 53 HR .  [c.43]

Оборудование и трубопроводы сероводородсодержащих месторождений испытывают механические нагрузки, которые, как правило, не превышают 0,5ад 2. то есть ресурс коррозионно-механической прочности металла не реализуется почти наполовину. Принимая во внимание этот факт, а также данные анализа отказов и изменения свойств бездефектного металла трубопроводов, представляется нецелесообразной эксплуатация оборудования в случае уменьшения более чем в два раза сопротивляемости металла сероводородному растрескиванию. В соответствии с этим шкалу времени предварительной выдержки образцов в среде NA E совмещают со шкалой планируемого срока эксплуатации трубопровода (рис. 34).  [c.124]

Содержание сероводорода в природном газе на разных месторождениях составляет от сотых долей процента до 25% об., а двуокиси углерода — от долей процента до 15% об. Как правило, в газе одновременно присутствуют и сероводород, и двуокись углерода. На АГКМ общее содержание в газе кислых компонентов достигает 40% об., а на месторождениях Северного Кавказа и Восточной Украины сероводород в большинстве случаев вообще отсутствует. В связи с этим характер коррозионных разрушений металла оборудования, используемого на различных месторождениях, имеет существенные отличия. В случае наличия в природном газе двуокиси углерода наблюдается общая коррозия металла, а в присутствии сероводорода — его сероводородное растрескивание.  [c.216]

В случае сероводородной коррозии чрезвычайно важную роль во влиянии на коррозионный процесс играет напряженно-деформированное состояние металла, так как значительные остаточные и рабочие напряжения вызывают сероводородное растрескивание, которое является труднопрогнозируемым и приводит к внезапным отказам оборудования, что, в свою очередь, является опасным для окружающей среды.  [c.220]

Испытания, результаты которых представлены в табл. 20 и 21, проводили в статических условиях при комнатной температуре. Коррозионной средой служила модельная среда NA E (стандарт Национальной ассоциации инженеров-коррозиони-стов США), то есть 5%-й водный раствор Na l, насыщенный сероводородом до исходной концентрации (около 3,0 г/л) и подкисленный уксусной кислотой до pH 3,0-3,5 [51]. Защитную эффективность ингибиторов от общей сероводородной коррозии оценивали в стеклянных коррозионных ячейках емкостью 1000 мл (в жидкой фазе) и 3000 мл (в парогазовой фазе). В первом случае ячейку наполняли жидкостью примерно на 95% без предварительной продувки инертным газом в целях  [c.233]

В табл. 29 приведены результаты исследования защитной способности разработанных ингибиторов в условиях коррозии стали 20 под напряжением в среде NA E, которые свидетельствуют о том, что эти реагенты в жестких условиях эксплуатации металлического оборудования эффективно препятствуют развитию сероводородного растрескивания (СР) и коррозионной усталости (КУ) металла.  [c.276]


Один из основных видов коррозионного разрушения газонефтепромыслового оборудовармя — статическая водородная усталость (СВУ), т.е. снижение длительной прочности стали в результате водородного охрупчивания в условиях статического нагружения металла. Предел статической водородной усталости, соответствующий максимальному напряжению, при котором не наблюдается коррозионного растрескивания, зависит от многих взаимосвязанных факторов химического состава, термической обработки и механических свойств стали, уровня приложенных напряжений, количества поглощенного водорода, состояния поверхности и др. Влияние этих факторов не только взаимосвязано, но в некоторых случаях и противоположно. Поэтому нельзя рассматривать предельные напряжения, при которых не происходит сероводородного растрескивания, как абсолютные значения дог скаемыч напряжений. которые могут быть использованы при проектировании оборудования их следует рассматривать как сравнительные величины при сопоставлении стойкости различных металлов.  [c.35]

Наиболее целесообразным следует считать количество ингибитора на единицу жидкости. Оно колеблется в зависимости от эффективности ингибиторов в пределах от 100 до 2000 мг/л и более. Ингибитор считается эффективным, если его количество является достаточным (150—300 мг л). На месторождениях, содержащих HjS и СО2, наиболее приемлема пакерная конструкция скважин. Пакер изолирует межтрубное пространство (между насосно-компрессорной и обсадной трубами), которое заполняется ингибитором коррозии и снижает растягивающие нагрузки, приходящиеся на колонну насосно-компрессорных труб. Применение специальных пакеров может практически полностью разгрузить колонну и снизить возможность сероводородного растрескивания. В безпакерных скважинах рекомендуется применять трубодержатели. Заполнение межтрубно-го пространства ингибитором надежно защищает от коррозионных поражений наружную поверхность насосно-компрессорных труб и внутреннюю — обсадных труб.  [c.147]

В настоящее время часто отмечаются случаи сероводородного растрескивания через 5—6 лет эксплуатации оборудования, контактирующего с регенерированными растворами этаноламинов, где содержание HjS составляет около 1%. Это указывает на высокую коррозионную агрессивность регенерированных pa iBopoB.  [c.174]

Защита от коррозионных поражений оборудования по подготовке газа начинается с правильного выбора материала. Для подготовки сероводородсодержащего газа во избежание сероводородного растрескивания наиболее целесооб-  [c.176]

Сероводородсодержащий газ транспортировать по некоррозионно-стойким трубам даже в осушенном виде не рекомендуется. Связано это с тем, что даже небольшие отклонения в технологическом режиме, приводят к попаданию в трубопровод незначительного количества влаги, и вызывают в короткий срок сероводородное растрескивание материала труб. Наиболее подвержены этому явлению сварные швы, а точнее зоны сплавления сварных швов, где располагаются максимальные остаточные растягивающие сварочные напряжения и наиболее неблагоприятная структура металла. Соответственно, из двух типов труб бесшовных горячекатаных и сварных большей коррозионной стойкостью обладает первый тип. Бесшовные горячекатаные трубы по своей специфике изготовления обладают меньшей дефектностью по неметаллическим включениям, что оказывает очень благоприятное влияние на их стойкость к водородному растрескиванию. Требования к качеству материала труб в этом случае аналогичны требованиям к качеству материала шлейфовых труб. Наиболее распространен-  [c.181]

В первую очередь от сероводородной коррозии стр)адаю г. газо-, нефтедобывающая и нефтеперерабатывающая отрасли промышленности. При добыче нефти и газа буровая вода и водный конденсат содержат агрессивные коррозионные агенты (углекислый газ, органические и неорганические кислоты, соли, сероводород), которые вызывают интенсивную коррозию металлического оборудования, изготовленного из черных металлов [ 4-8]. Во многих гаэо-и нефтедобывающих скважинах (так называемые киолые скважины ) присутствует сероводород. Коррозия в таких скважинах уже давно является весьма серьезной проблемой На некоторых нефтепромыслах течь в насооно-ком-пре кх пв 1х трубах появляется в среднем каждые 30 дней [4]. Скорость коррозии малоуглерЬдистой стали в жидкости из нефтяной скважины, насыщенной сероводородом, в 6 раз выше, чем в отсутствие сероводорода [ 7 ].  [c.47]

Можно предположить, что эффективными ингибиторами сероводородной кислотной коррозии железа будут соединения, которые в сероводородных растворах медленно генерируют вещества, способные давать нерастворимые продукты с-сероводородом. Эти вещества могут вступать во взаимодействие и со слоем хемосорбированного сероводорода, находящимся на поверхности металла, с образованием поверхностного барьера фазового характера, который прочно удерживается поверхностью. Этот барьер, нерастворимый в коррозионной среде, изолирует от нее поверхность металла (рис. 8,1 ). К таким веществам относятся, например, альдегиды (формальдегид и др.). Наиболее эффективными будут соединения, которые разлагаются с выделением альдегида каталитически, роль катализатора при этом выполняет поверхность корродирующего металла.Расход ингибитора на образование защитной фазовой пленки  [c.74]

Маричев В. А. О влиянии поляризации на скорость роста трещин при коррозионном растрескивании высокопрочных сталей в даазриро-вэ чых, аэрированных и насыщенных сероводородных растворах хлоридов//Физ.-хим. механика материалов. - 1976. - № 3. -С. 101-103.  [c.136]

Высокая коррозионная стойкость в этих средах отмечена для алюминия и его сплавов, поэтому при защите от сероводородной коррозии можно применять алюминиевые металлизаци-онные покрытия.  [c.42]


Смотреть страницы где упоминается термин Коррозионное сероводородное : [c.14]    [c.15]    [c.35]    [c.146]    [c.14]    [c.13]    [c.38]    [c.255]    [c.306]    [c.359]    [c.169]    [c.28]    [c.43]    [c.222]    [c.361]   
Машиностроение энциклопедия ТомII-2 Стали чугуны РазделII Материалы в машиностроении (2001) -- [ c.251 ]



ПОИСК



Виды сероводородного коррозионного растрескивания

Влияние состава коррозионных сред, температуры и давления на сероводородное растрескивание

Изучение механизма сероводородной коррозии железа и стали в кислых среКаталитические теории стимулирующего коррозионного воздействия сероводорода

Методы определения стойкости стали против сероводородного коррозионного растрескивания



© 2025 Mash-xxl.info Реклама на сайте