Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура аустенита

У всех сплавов, содержащих менее 2,14% С, в результате первичной кристаллизации получается структура аустенита у всех сплавов, содержаш,их более 2,14%С, структура состоит из ледебурита с избыточным аустенитом или цементитом.  [c.172]

Сплав концентрации К, содержащий углерода меньше 0,01%. при температуре порядка 1000°С имеет структуру аустенита. При нормальной температуре железо существует в форме а, следовательно, пр И охлаждении происходит у а-превраще-иие или превращение аустенита в феррит. Для чистого, совершенно безуглеродистого сплава это превращение произошло бы при постоянной температуре в точке G (911°С). Для сплава концентрации К превращение происходит в интервале температур от точки 1 до точки 2. На кривой охлаждения это прев-  [c.172]


Все сплавы, содержащие от 0,8 до 2,0% С, кристаллизуются подобно сплаву IV. Кристаллизация сплава начинается после достижения точки I. В интервале I—2 проходит и заканчивается образование аустенита, состав которого по мере охлаждения меняется по участку/ —2 (линии солидуса). На участке 2— происходит охлаждение однофазной структуры аустенита. В точке 3 (пересечение с линией SE) достигается предельное насыщение С аустенита, при дальнейшем охлаждении из пересыщенного аустенита выпадает вторичный цементит  [c.63]

Мартенситное превращение заключается в образовании внутри каждого зерна аустенита большого числа кристаллов мартенсита, имеющих форму пластинок, величина которых (около 10 —Ю " см) зависит от состояния зерен аустенита. Более однородной и совершенной кристаллической структуре аустенита соответствуют крупные кристаллы образующегося мартенсита, и наоборот. Превращение происходит не за счет роста, а вследствие образования новых кристаллов. Мартенситное превращение при охлаждении характеризуется следующими кривыми (рис. 8.18).  [c.102]

Структура и свойства сталей мартенситного класса зависят от содержания С и Сг. Так, стали с низким содержанием С (-<0,10%) и д повышенным содержанием Сг (>15%) являются ферритными и не закаляются, поскольку не протекает превращение Стали с содержанием С-<10% и Сг<15% при нагреве приобретают структуру аустенита, а при охлаждении происходит превращение о образованием мартенсита. Химический состав и назначение мартенситных сталей приведены в табл. 15.1.  [c.264]

Отдельные атомы углерода могут находиться в кристаллической решетке, образуя структуру аустенита. В процессе охлаждения (при перлитном превращении) происходит изменение растворимости углерода в кристаллических решетках у- и a-Fe с образованием новых фуллеренов, а не цементита вторичного и третичного, как это предлагается в существующей. теории.  [c.259]

Наилучшие свойства у этой стали получаются после закалки и последующего старения. В результате закалки с 1190°С в воде и старения при 800 С, 8 ч получается структура аустенита и карбидов в дисперсном состоянии.  [c.51]

Поэтому склонность к упрочнению нельзя связывать только с типом решетки. Среди слабо упрочняемых при деформации металлов и сплавов — алюминий, сплавы со структурой феррита, а среди сильно упрочняемых — никель, медь, сплавы со структурой аустенита.  [c.537]

Первое превращение - при нагреве стали - это превращение перлита в аустенит, при котором из двухфазной структуры перлита (феррит + цементит) образуется однофазная структура аустенита.  [c.160]

Выявление структуры аустенита суш ествуюш ими методами цветного вакуумного травления [271] происходит в течение длительного времени (2—30 мин). Поэтому ни эти, ни другие известные методы тепловой микроскопии [272—274] не годятся для изучения структурных изменений в стали при объемном упрочнении деформированием со скоростями, близкими к условиям горячей обработки давлением (прокатка, штамповка, ковка и т. д.).  [c.181]


Максимальное сопротивление абразивному изнашиванию стали как в литом, так и в отожженном состоянии получено при содержании 1,10% С, 3,10% Сг и 0,86% Ti (плавка № 202). В литом состоянии сталь имеет структуру аустенита со значительным количеством крупноигольчатого мартенсита, мелкие зернистые карбиды титана и незначительное количество эвтектики, включающей цементитный карбид (Fe, Сг)зС.  [c.108]

В сталях с эвтектоидным превращением возможно. получение двухфазных структур с мартенситными волокнами. Для этого пользуются методом неполной закалки. После прокатки при определенной температуре получается волокнистая структура аустенита в феррите. После закалки материала его структура состоит из феррита и мартенсита в виде волокон. Увеличение прочности может быть весьма заметным — с 42,8 до 105 кг/мм .  [c.110]

Интенсификация режима обработки не должна сопровождаться ухудшением качества поверхности. Особенно опасен перегрев, появление при шлифовании прижогов, т. е. участков с пониженной твердостью, и трещин. При шлифовании непосредственно на поверхности может образоваться зона вторичной закалки, под которой располагается слой отпущенного металла с постепенным переходом к исходной твердости. Температурное воздействие в процессе шлифования связано со структурными преобразованиями в слое, появлением внутренних напряжений. При большой глубине распространения тепла величина вторично-закаленной зоны невелика, тепло нижележащих слоев способствует отпуску поверхностного слоя с образованием в нем напряжений растяжения. Их формированию благоприятствует наличие в структуре аустенита. Прижоги и трещины возникают чаще всего при чрезмерно большой поперечной подаче (глубине шлифования), а также при большом биении круга или детали. Прижогов можно избежать, если увеличить, окружную скорость вращения детали или продольную подачу. При скоростном шлифовании выделяется больше тепла число оборотов детали берется более высоким, охлаждение круга необходимо усилить. Больше  [c.27]

Описанный в п, 4 этой главы механизм мартенситного превращения — бездиффузи-онность и ориентированность— обусловливает большую зависимость структуры мартенсита от исходной структуры аустенита. Как и сдвиг при пластической деформации, так и мар-тенситная пластина развивается внутри зерна аустенита, разрастаясь от края до края. Значит, чем крупнее зерно аустенита, тем длиннее образующиеся мартенситные пластины. На рис. 223 показано, что в крупном зерне аустенита образовались крупные иглы мартенсита, а в мелких зернах аустенита — мелкие мартенситные иглы, Поскольку пластические свойства и особенно вязкость мартенсита и продуктов его распада (до тех температур отпуска, при которых сохраняется игольчатость микроструктуры) с огрублением структуры сильно ухудшаются (твердость практи-  [c.278]

Полагают, что причиной ножевой коррозии является то, что основной металл в участках, непосредственно прилегающих к сварному шву, подвергается при лаложепии первого сварного шва нагреву до 1200—1300° С. При этом происходит переход карбидов титана и ниобия в твердый раствор. При охлаждении стали с температуры, превышающей предел растворимости этих карбидов, фиксируется структура аустенита, содержащего в твердом растворе титан и ниобий. При наложении  [c.167]

Если сталь со структурой аустенита, полученион в результате нагрева до температуры выше Ас- (для доэвтектоидной стали) или выше Аст (для заэвтектои/шой стали), переохладить до темпера-  [c.161]

Аустенитные стали. Для получения структуры аустенита эти стали должны содержать большое количество никеля (марганца), а для получения высокой жаростройкости — хрома. Для достижения высокой жаропрочности их дополнительно легируют Мо, W, V, Nb и В. Эти стали применяют для деталей, работающих при 500— 750 °С. Жаропрочность аустенитных сталей выше, чем перлитных, мартенситных, мартенситно-ферритных и ферритных.  [c.290]

Рис 46 Схема диаграмм состояний железо-легирующий элемент а- стали первой группы б- стали второй группы При содержании легирующих элементов больше в% или с% стали имеюг однофазную структуру аустенита или феррита и будут относиться к сталям аустенитного или ферритного классов. При нагреве фазовые превращения в них не происходят, он и не упрочняются термической обработкой (закалкой).  [c.88]


При ТМО сталей наблюдается весьма сложное взаимодействие процессов пластической деформации и фазового превращения. Известно, что при пластической деформации в области стабильного аустенита (выше точки Асз) зерна аустенита дробятся на более мелкие и процесс блокообразования протекает более интенсивно. Последующая закалка, при которой температура стали быстро снижается ниже температуры рекристаллизации (чем предотвращается развитие собирательной рекристаллизации), позволяет сохранить блочную структуру деформированного аустенита до начала мартенситного превращения, которое протекает в пределах блочной структуры аустенита. Чем мельче будут получаемые при высокотемпературной деформации блоки в аустените, тем более дисперсной окажется структура мартенсита. Это и понятно, так как в тонкой структуре аустенита с нарушенным строением кристаллической решетки в областях границ блоков имеется большое число центров, энергетически выгодных для образования зародышей кристаллов мартенсита, а это предопределяет развитие тонких мартенситных пластинок. Превращение аустенита в мартенсит сопровождается дальнейшим измельчением областей когерентного рассеивания внутри кристаллов мартенсита до 10 — 10- см [19].  [c.15]

В результате ТМО резко повышается интенсивность поглощения энергии каждым элементарным объемом и одновременно увеличивается число таких объемов. Это является следствием суммарного эффекта создания большого числа несовершенств (дислокаций), характеризующихся упорядоченным расположением и приводящих к относительно равномерному искажению кристаллической решетки. Возвращаясь к уравнению (10), можно сказать, что ТМО стали прежде всего резко увеличивает среднюю энергию искажения (характеризуемую параметром п) вследствие увеличения плотности дислокаций. При этом также повышается величина суммарного рабочего объема Уз в результате создания разветвленной субструктуры, унаследованной от структуры аустенита. Рост параметров п и Уз увеличивает энергопоглощение при последующем механическом нагружении стали, что и вызывает эффект упрочнения при ТМО.  [c.85]

Повышению вязкости разрушения стали со структурой бейнита способствует реализация оптимальных режимов регулируемого термопластического упрочнения. Суть этой обработки заключается в создании горячей деформацией с последующей выдержкой мелкозернистой структуры аустенита и образовании субзеренных построений в мелком зерне аустенита за счет окончательной деформации. Анализ диаграммы конструктивной прочности стали со структурой бейнита свидетельствует о том, что с понижением температуры изотермического превращения эффект РТПУ, заключающийся в повышении показателей конструктивной прочности, проявляется более заметно. В диапазоне предела текучести от 1300 до 1900 МПа величина вязкости разрушения стали, обработанной по режиму РТПУ [245], существенно превышает вязкость разрушения образцов, подвергнутых высокотемпературной термомехани ской изотермической обработке (ВТМИЗО) и обычной изотермической обработке (ИЗО).  [c.150]

В случае изотермического распада переохлажденного аустенита в области температур перлитного превращения эффект РТПУ проявляется слабее, чем при бейнитном превращении. Однако при реализации непрерывного охлаждения стали У8 с получением структур перлитного типа было показано, что получение структуры аустенита с мелким зерном и субзеренными построениями приводит к заметному росту показателей конструктивной прочности по сравнению с недеформированными образцами.  [c.151]

Многие способы нанесения покрытий требуют повышения температуры детали до уровня, при котором может полностью или частично произойти объемное разупрочнение материала основы (в ряде случаев температура основы повышается до уровня а — у-превра-щепия в ста.ли). В связи с этим возникает необходимость прямого анализа структуры аустенита и продуктов его распада.  [c.181]

Нами разработана методика исследований скоростных микро-структурных изменений в стали при высоких температурах и пластической деформации [275]. При рассмотрении недеформированного аустенита этот метод имеет существенное преимущество перед вакуумным травлением, так как он фиксирует структуру аустенита практически мгновенно, что важно для динамических процессов резко выделяет слаботравящиеся двойниковые границы созданием цветового контраста пограничных объемов надежно исключает из рассмотрения в качестве границ следы движения границ аустенитных зерен отличается большой наглядностью.  [c.181]

Исследования микроразрушений при абразивном износе на образцах сталей типа Х12Ф1, 20X13 после химико-термической обработки показали, что наиболее благоприятным для повышения износостойкости является сочетание в структуре аустенита и карбидов. Так, срок службы пресс-форм из сталей с такой структурой для прессования огнеупорных изделий увеличился в 4—6 раз.  [c.30]

Присадка 0,12—0,63% Sb устраняет дендритную структуру аустенита, растворимость углерода в аустените возрастает, наблюдается увеличенное количество игл вторичного цементита. Аусте-нит становится более склонным к переохлаждению, и эвтектоид приобретает тонкое строение. Однако присадка сурьмы в количествах более 0,45% приводит к нежелательным изменениям структуры. Вытянутые дендриты аустенита не образуются. Междендрит-иые пространства заполняются уже не эвтектикой, а полями струк-  [c.70]

Максимальное сопротивление абразивному изнашиванию чугуна можно достичь повышением 1 1нкротвердости бывших аусте-нитных участков, уменьшением их объема и увеличением количества эвтектики. Этим требованиям наиболее полно удовлетворяют высоколегированные хромотитановые белые чугуны с присадкой молибдена и ванадия или только молибдена, имеющие в основе структуру аустенита с карбидами титана, карбидной эвтектикой и вторичными карбидами.  [c.100]


Нагрев образцов осуществлялся в камере Вакутерм высокотемпературного микроскопа фирмы Рейхерт в атмосфере аргона с защитными эхгранами — геттерами. Деформированный металл подвергался изотермической выдержке при температурах 900, 1100 II 1200° С. Как показано и в ранее проведенных работах [2], в стали при достижении температуры 900° С образуется мелкозернистая структура аустенита. Уже в самом начале изотермической выдержки в структуре образуются проталины — места с нечеткими размытыми границами зерен. С увеличением выдержки площадь проталин увеличивается. После 1 — 2 ч выдержки определяются границы прота.лин и в структуре наблюдаются крупные зерна (№ 2—1) на фоне мелких Лт 8—9 (рис, 1).  [c.150]

Структура изломов образцов, испытанных при 76 и 4 К, характерна для ферромагнитного материала. Поскольку исходная структура аустенита является парамагнитной, ферромагнетизм является ярким доказательством наличия мартенситного фазовог о превращения с образованием объ-емноцентрированной решетки. Признаков такого превра-  [c.228]

Вязкость разрушения сплава In onel Х750, полученного методом вакуумно-индукционной выплавки в сочетании с вакуумно-дуговым переплавом, очень незначительно уменьшается при снижении температуры от комнатной до 4 К. Такое поведение типично для материалов, имеющих структуру аустенита, у которых вязкость разрушения остается практически постоянной при снижении температуры.  [c.310]

S 0,004В, остальное — Fe. Сплав парамагнитен, имеет структуру аустенита и упрочняется дисперсионным твердением. В аустените сплава содержится достаточное количество никеля, что предотвращает мартенситное превращение при охлаждении до 4 К. В процессе старения происходит образование различных фаз, таких как Ni(Ti,Al), Ni4Mo (Fe, Сг) Ti, а также выделений, содержащих примеси (например, Сг — Sn и Сг — Fe — С).  [c.322]

Даже при самых высоких скоростях лакалки не удавалось получить чистый аустепит и исследовать его структуру. А. А. Байков ставит замечательный эксперимент, позволивший наблюдать структуру аустенита при такой температуре, когда он является стойким, т. о. смотря по содержанию углерода, между 700 и 1200°. С этой целью,— пишет ученый, — я предпринял опыты, которые далп довольно хорошие результаты и которые совершенно точно, я полагаю, определяют природу аустенита  [c.172]

Акад. А. А. Байков (1870—1946 гг.) является автором многочисленных работ, посвященных изучению черных и цветных металлов. Чрезвычайно большое значение имела работа А. А. Байкова по выявлению структуры аустенита при высоких температурах. Это было первое экспериментальное исследование, доказавшее реальность суш,ествовапия аустенита. Она была опубликована в Париже и затем перепечатана во всех иностранных металловедческих журналах, включая журналы США и Японии.  [c.187]

Сплавы, занимающие область на диаграмме состояния до 2,14 % С, называются сталью, более 2,14 С — чугуном. Указанная граница 2,14 % С относится только к двойным Ре—С-сплавам или сплавам, содержащим сравнительно небольшое число примесей. Для высоколегированных Ре—С-сплавов она может смещаться в ту иля иную сторону (например, сталь яеде-буритного класса содержит 2—2,3 % С, высококремнистый чугун содержит 1,6—2,5 % С). Граница 2,14 % С принята не произольно. Она разделяет систему Ре—С на две части, отличающиеся друг от друга по структуре. У всех сплавов, содержащих менее 2,14 % С, в результате первичной кристаллизации получается структура аустенита сплавы, содержащие 2,14% С, имеют в структуре эвтектику. Это различие в структуре при высокой температуре создает существенную разницу в свойствах сплавов (технологических, механических и др.). Чугун благодаря наличию эвтектики не ковок, однако более низкая температура его плавления обеспечи-  [c.359]


Смотреть страницы где упоминается термин Структура аустенита : [c.248]    [c.284]    [c.204]    [c.11]    [c.59]    [c.76]    [c.31]    [c.131]    [c.299]    [c.301]    [c.70]    [c.28]    [c.28]    [c.28]    [c.54]    [c.7]   
Высокомарганцовистые стали и сплавы (1988) -- [ c.155 ]



ПОИСК



Анциферов В.Н., Шацов А.А., Смышляева Т.В ПОРОШКОВЫЕ АБРАЗИВОСТОЙКИЕ ПСЕВДОСПЛАВЫ СО СТРУКТУРОЙ МЕТАСТАБИЛЬНОГО АУСТЕНИТА

Аустенит

Аустенит, изучение структуры

Аустенит, изучение структуры Белые» фазы

Возможные ориентировки аустенита при а - у превращении в структуре двойникованного мартенсита

Морфология, структура и кинетические параметры образования аустенита

Превращение ферритно-карбидной структуры в аустенит при нагреве

Превращения аустенита в условиях термических циклов сварки. Влияние состава и исходной структуры стали, степени гомогенизации и размера зерна аустенита на кинетику превращения

Промежуточное превращение аустенита структура и состав продуктов

Структура и свойства легированного аустенита

Термодщ омическое обоснование возникновения метастабитного аустенита в сталях с неравновесными структурами

Элементарные реакции, структура и состав продуктов превращения аустенита в средней области



© 2025 Mash-xxl.info Реклама на сайте