Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плавление, дефекты металлов

ГОСТ 19232. Сварка металлов плавлением. Дефекты сварных соединений. Термины и определения.  [c.268]

Как и при других фазовых превращениях, роль дислокационных скоплений и искажений кристаллической решетки должна проявиться при плавлении. Дефекты структуры облегчают зарождение фаз, поскольку уменьшают работу образования зародыша критического размера. Они способствуют развитию диффузионных и релаксационных процессов, с которыми связано продвижение межфазной поверхности. При нагреве, например, двух, соприкасающихся друг с другом металлов, образующих эвтектическую систему, плавление ускоряется, если предварительной обработкой увеличена степень дефектности структуры [39, 212]. Можно ожидать, что и при термоциклировании с оплавлением накопление дефектов у межфазной поверхности приведет к локальному образованию жидкой фазы.  [c.123]


Контактное твердожидкое плавление металла А по границам зерен и развитие межзеренной эрозии происходит обычно пр малой растворимости паяемого металла в жидком припое В. При достаточно большой растворимости паяемого металла А в припое В при температуре пайки в А развивается общая химическая эрозия. Это обусловлено протеканием процесса контактного твердожидкого плавления паяемого металла прежде всего по границам зерен, в местах скопления дефектов. С увеличением растворимости металла А в жидком припое В увеличивается ширина межзеренных участков химической эрозии. Начиная с некоторого значения при котором ширина участков становится равной половине диаметра зерна или больше ее, меж-зеренная эрозия переходит в общую.  [c.31]

Допуская возможность существования кластеров в кристалле, мы должны рассматривать их колебания как новый тип тепловых дефектов решетки [512]. В этой связи представляют интерес выявленные расчетом [581—583], а затем экспериментально обнаруженные [584, 585] у ряда чистых отожженных металлов тепловые дефекты неизвестной природы с энергией образования 0,2 эВ, которые могут быть обусловлены тепловым возбуждением атомных групп [585]. Все более возрастаюш ее превышение макроскопического теплового расширения кристаллов А1 [541, 542] и Na [586] над расширением решетки по мере приближения к точке плавления, аномальный рост удельной теплоемкости [587—590], электросопротивления [590, 591] и скорости самодиффузии атомов [592, 593] вблизи точки плавления щелочных металлов, обычно приписываемые развитию вакансий в решетке, с равным успехом могут быть объяснены все более отчетливым дроблением вещества на кластеры, разделенные аморфными прослойками атомов и совершающие колебательные движения.  [c.206]

Повышению производительности, уменьшению дефектов в сварном шве, снижению уровня сварочных деформаций и остаточных напряжений, а значит и улучшению геометрической формы шаровой оболочки способствует применение при автоматической сварке под флюсом дополнительного порошкообразного присадочного металла (ППМ). Однако и при этом способе сварки могут появляться присущие ему дефекты в виде несплавлений по кромке. Они связаны с тем, что применение ППМ позволяет максимально использовать тепло перегрева сварочной ванны для целей плавления присадочного металла. Вследствие этого уменьшается количество расплавляемого основного металла и увеличивается вероятность появления несплавлений при отклонениях от технологии сварки. Понятно, что высокое качество сварных соединений может быть обеспечено только при надлежащем контроле за соблюдением режимов сварки.  [c.207]


Дефекты плавления, заливки металла в изложницы, кристаллизации и охлаждения — это зоны ликвации, общее несоответствие заданному химическому составу, усадочные раковины, рыхлость, пористость, газовые раковины, продольные и поперечные горячие и холодные трещины, пузыри, неметаллические включения (земля, шлак) и др. Ликвация — это местная неоднородность химического состава сплава, возникающая при его кристаллизации. В зоне ликвации могут быть понижены металлические характеристики металла.  [c.536]

В процессе наплавки контролю подвергают режим и технологию наплавки, размеры наплавленного слоя, характер плавления присадочного металла, наличие видимых дефектов, легкость отставания шлака, перегрев изделия.  [c.670]

ПЕРЕГРЕВ — дефект металла, характеризуемый значительным укрупнением зерна и снижением вязкости может возникать при нагреве металла до температур, близких к температуре его плавления.  [c.101]

ПЕРЕЖОГ — неисправимый дефект металла, обычно поверхностный, образующийся при его нагреве в окислительной среде до температур, близких к температуре плавления. П. характеризуется появлением на границах зерен грубых окисных пленок.  [c.102]

Аналогичные дефекты могут возникнуть и при сварке, причем для этого случая специфичен локальный характер дефектов, захватывающих зоны сварки. Дополнительные дефекты возника от при взаимодействии металла изделия и наплавленного металла. Так, по рекомендациям Международного института сварки все дефекты для соединений, полученных методом сварки плавлением, подразделяются на. шесть групп.  [c.468]

В таком случае приложение нагрузки т (меньшей предела текучести) к металлу, имеющему несовершенства кристаллического строения, вызовет неоднородное распределение внутренних напряжений в очагах локального плавления приложенное напряжение преобразуется в гидростатическое давление (фазовое состояние близко к жидкому, дальний порядок отсутствует) а в остальной части кристалла напряжение в элементарных объемах подчиняется законам упругости твердого тела. Таким образом, в местах дефектов структуры типа дислокаций возможно равенство т = Р. Например, в работе [16] при вычислении свободной энергии вакансий постулируется справедливость этого соотношения для некоторых областей материалов .  [c.28]

Вакансионные петли. Из экспериментов по закалке и облучению металлов следует, что при скоплении вакансий образуются как плоские (вакансионные петли), так и трехмерные (тетраэдры дефектов упаковки, поры) скопления [44]. Облучение при повышенной температуре (больше 0,3 Гпл. где Тал — температура плавления, К) в большинстве случаев приводит к развитию пористости, поскольку в противоположность промежуточным пет-  [c.121]

Наплыв на сварном соединении —дефект в виде натекания металла шва на поверхность основного металла или ранее выполненного валика без сплавления с ним. Образуется при быстром плавлении электродов и не-расплавлении основного металла или ранее выполненного валика, если сварка производится в нижнем положении, а если в вертикальном положении, то из-за того, что величина тока сварки значительно превосходит номинальную. Зачастую наплывы скрывают непровары.  [c.466]

Запись кривых плавления и охлаждения металла производится на диаграммную ленту электронного потенциометра. Было изучено влияние переохлаждения жидкого металла на макро-и микронеоднородность, образование продуктов взаимодействия и поверхностных дефектов, а также на другие характеристики.  [c.43]

Еще два фактора, которые приходится регулировать при вакуумно-дуговой плавке, - это эффекты магнитного поля и упомянутая скорость плавления электрода. Поскольку в установке использован постоянный ток, возникновение сильных магнитных полей нельзя считать необычным явлением. Эти поля могут концентрироваться поддерживающей стальной рамой и взаимодействовать с током в расплавленной ванне, вызывая перемещение жидкого металла и влияя на стабильность дуги. И то, и другое явление может стать причиной возникновения кристаллизационных дефектов. Принимают все  [c.137]


Электрод для дуговой сварки представляет собой металлический стержень, на поверхность которого нанесено специальное покрытие. Состав металла стержня и электродного покрытия влияет на состав и свойства сварного шва и на горение дуги. Общие требования к электродам обеспечение устойчивого горения дуги хорошее формирование шва получение металла определенных свойств и химического состава, свободного от дефектов спокойное и равномерное плавление электродного стержня и покрытия в процессе сварки минимальные потери электродного металла от угара и разбрызгивания высокая производительность сварки легкая отделимость шлаковой корки с поверхности шва достаточная прочность покрытия, сохранение  [c.112]

Дефекты классифицируются также по видам исходя из их природы и причин образования. При сварке плавлением основные виды наружных дефектов - это отклонения сечения шва от требований чертежа, неравномерное сечение шва по длине (может свидетельствовать о неравномерном проплавлении) наплывы - натекание металла шва на поверхность основного металла без сплавления с ним подрезы (рис. 174) -местное уменьшение толщины основного металла у границы шва (уг-  [c.337]

Недостатками установок, в которых при охлаждении отливок используется теплоотдача излучением, обладающая невысокой эффективностью, являются прежде всего низкая скорость кристаллизации сплавов и широкая область твердожидкой зоны, которые в конечном счете обусловливают образование крупнокристаллической структуры и рассмотренных ранее дефектов литья при направленной кристаллизации. Эти недостатки можно в существенной степени устранить, интенсифицируя направленный теплоотвод от формы с отливкой посредством их конвективного охлаждения в ванне с расплавленным металлом, имеющим невысокую температуру плавления (например, олово, алюминий). Схема установки для ускоренной направленной кристаллизации представлена на рис. 15.4. Внутри нагревательной печи 5 размещается прокаленная керамическая форма I, закрепляемая на штоке 2 вертикального привода при помощи специальной подвески, изготовленной из молибденового сплава. Керамическую форму заполняют расплавом из плавильного индуктора через заливочную воронку, сливное отверстие которой смещено относительно штока. Для обеспечения температурного градиента между зонами нагрева и охлаждения они разделены тепловыми экранами. Зона охлаждения, расположенная под зоной нагрева, состоит из тигля 4, заполненного жидкометаллическим теплоносителем 5. Расплавление теплоносителя осуществляется нагревателем 6. После заполнения керамической формы расплавом жаропрочного сплава она с помощью штока перемещается с регламентированной скоростью в зону охлаждения и постепенно погружается в жидкий теплоноситель. Расчеты показали, что значение коэффициента теплопередачи К при использовании жидкометаллического охладителя (расплав олова при 300—450 С) более чем в три раза превышает значение этого коэффициента при охлаждении формы излучением в вакууме 225 и 70 Вт/(м К) соответственно.  [c.366]

При пайке в отличие от сварки плавлением не происходит плавления основного металла, а расплавляется припой, который при кристаллизации и соединяет паяемые заготовки. Поэтому состав паяного шва обычно в большей степени отличается от состава основного металла, чем при сварке, и наряду с такими дефектами, как трещины, поры, остатки флюсов и продуктов флюсования, непропаи и неспаи (аналогично непрова-рам), наблюдаются такие дефекты, как прослойки хрупких химических соединений (если такие соединения образуются между компонентами припоя и паяемого материала) и локальная химическая эрозия - частичное растворение основного материала в припое, приводящее к уменьшению рабочего сечения шва аналогично подрезу при сварке.  [c.339]

Детекторы ионизирующих излучений газовые ионизационные. Термины и определения Сварка металлов плавлением. Дефекты сварных соединений. Термины и определения 74. Сварка металлов. Классификация 72. Контроль неразрушающий. Дефектоскопы магнитографические и устройства намагничивающие. Общие технические требования ГОСТ 19849—74. Нейтронное излучение. Термины и определения ГОСТ 20426—75. Контроль неразрушающий. Радиационные методы дефектоскопии. Область применения ГОСТ 21104—75. Контроль неразрушающий. Магнито-феррозон-довый метод  [c.328]

Мягкая основа сплава а-твердый раствор сурьмы в олове (рис. 176), а твердые кристаллы — Р-фаза эта фаза представляет собой твердый раствор на основе химического соединения SnSb. Сурьма и олово различаются по плотности, поэтому сплавы этих металлов способны к значительной ликвации. Для предупреждения этого дефекта в баббиты вводят медь. Она образует с сурьмой химическое соединение ugSn. Это соединение имеет более высокую температуру плавления и кристаллизуется первым, образуя разветвленные дендриты, которые препятствуют ликвации кубических кристаллов р (SnSb). Кроме того, кристаллы  [c.356]

Наиболее часто встречаются дефекты типа пор и непро-плавления. При сварке на мягких режимах (малых токах сварки и напряжениях дуги) возникают непроплавления между слоями, либо между первым слоем и основным металлом (рис. 5.7, а). Причиной появления непроплавлений и пор является недостаточно качественная зачистка поверхности каверны от ржавчины (рис. 5.7, б-г). Поры, как правило, возникают из-за содержащейся в защитном газе влаги. Наличие пор не привело к существенному снижению пластичности. При мягких режимах сварки и повышенной влажности защитного газа наличие одновременно общирного непроплавления и пор (рис. 5.7, а) привело к снижению пластичности до пяти раз. При таких условиях угол загиба образцов не превышал 24 градусов.  [c.306]


Так, например, следует учитывать тепловое расширение металла [83, 84] ). Вызывающая его ангармоничность колебаний решетки должна приводить к нелинейности температурной зависимости удельного сопротивления [85]. Кроме того, полагают, что, начиная с температуры, лежаш ей на 50—100° ниже точки плавления металла, концентрация дефектов решетки, вызванных тепловым движением, быстро растет последнее также должно оказывать существенное влияние на температурный ход сопротивления [86, 87]. Наконец, у переходных металлов рассеяние, обусловленное переходами между s-и б -зонами, тоже может вносить свой вклад в сопротивление [88—91]. Чтобы учесть отклонения температурно зависимости сопротивления от линейности, появляющиеся по той или иной причине при высоких температурах, Грюнейзен ввел в теоретическую формулу эмпирический множитель -fb, Г ), вследствие которого достоверность данных, приведенных в табл. 4, несколько уменьшается.  [c.192]

К настоящему времени выявлена структура некоторых комплексов дефектов. Так, помимо одиночных в металлах достаточно часто возникают дивакансии (бивакансии). Количество вакансий, объединяемых в пары, например, вблизи температуры плавления, может достичь —10 з от общего числа вакансий.  [c.233]

Рис. 141. Кривые а—е поликристаллов с одинаковой величиной зерна для серебра и твердых растворов серебро — галлий при 77 К. Стрелками указаны начало и конец стадии II. Энергия дефекта упаковки сплавов Ag—36 Ag-H +2 % Ga—32 Ag+6 % Ga—20 Ag-HO % Ga—10 эрг-см (a) и кривые 0—e поликристаллических металлов Ag 99,97 %, размер зерен 0,04 мм Си 99,999 % (0,03 мм) Ti 99,9 % (0,10 мм) А1 99,99 %. (0,11 мм) Fe 99,96 % (0,075 мм) Мо 99,98 % и Fe после зоииой очистки (0,09 мм). Различие температур плавления и модулей упругости учитывается величиной а/(ОГцд) (б) Рис. 141. Кривые а—е поликристаллов с одинаковой <a href="/info/134811">величиной зерна</a> для серебра и <a href="/info/1703">твердых растворов</a> серебро — галлий при 77 К. Стрелками указаны начало и конец стадии II. <a href="/info/32083">Энергия дефекта упаковки</a> сплавов Ag—36 Ag-H +2 % Ga—32 Ag+6 % Ga—20 Ag-HO % Ga—10 эрг-см (a) и кривые 0—e поликристаллических металлов Ag 99,97 %, размер зерен 0,04 мм Си 99,999 % (0,03 мм) Ti 99,9 % (0,10 мм) А1 99,99 %. (0,11 мм) Fe 99,96 % (0,075 мм) Мо 99,98 % и Fe после зоииой очистки (0,09 мм). Различие <a href="/info/32063">температур плавления</a> и <a href="/info/487">модулей упругости</a> учитывается величиной а/(ОГцд) (б)
Колтман и др. [20] показали, что в меди, облученной при 4° К, уже при 7° К наблюдаются явления частичного отжига. Чтобы провести сравнительное изучение изменений удельного электросопротивления различных металлов, облучение необходимо проводить при таких температурах, при которых не происходят явления отжига. Металлы с высокими температурами плавления имеют большие изменения электросопротивления в результате облучения при комнатной температуре. Указывается на большое увеличение электросопротивления молибдена, титана, циркония и железа, облученного при 80° С [16]. Подвижность дефектов -СИЛЬНО зависит от температуры плавления металлов. Опыты Кинчина и Томсона [48] по облучению молибдена и вольфрама быстрыми нейтронами при 78° К указывают на значительный эффект отжига молибдена и частично вольфрама при 90 и 120° К соответственно. Считают, что явления отжига в молибдене могут происходить и в интервале 20—90° К. Вероятно, даже в самых тугоплавких металлах происходит отжиг дефектов во время облучения при всех температурах, за исключением только чрезвычайно низких.  [c.272]

Лптейпые свойства. Литейные свойства металлов и сплавов определяются совокупностью ряда показателей, оптимальные значения которых дают возможность получать отливки без внутренних и внешних дефектов. Оптимальные температуры плавления, кипения, заливки, кристаллизации, плотность расплава и другие данные приведены при описании конкретных металлов и сплавов.  [c.15]

Наплавку выполняют кольцевыми швами по всей окружности щтуцера. Швы накладывают в направлении от существующего сварного шва, соединяющего штуцер с барабаном. Каждый последующий валик должен перекрывать предыдущий на одну треть его ширины. После наложения каждого валика удаляют шлак и брызги с поверхности на плавленного металла и штуцеров. Необходим послойный внешний осмотр не допускаются следующие дефекты трещины, подрезы, поры и незаплавленные кратеры.  [c.435]

Природа подобных трещин в районе зоны сплавления до настоящего времени полностью не выяснена. Можно предполагать, что одной из причин, вызывающих эти трещины, является образование субмикродефектов по границам зерен околошовной зоны в условиях нагрева при сварке до температур, близких к температуре плавления. Указанные дефекты являются в дальнейшем очагами начала эксплуатационных разрушений. Вероятно также выделение примесей по границам зерен, ослабляющих их прочность. Развитию подобных трещин может также способствовать неравномерность свойств основного металла и шва, наличие местных ослаблений сечения, вызванных проточками под подкладные кольца в районе стыка, перераспределение углерода и других легирующих элементов в зоне сплавления [17], а также воздействие высоких дополнительных напряжений изгиба.  [c.40]

Если считать установленным, что при плавлении металла его структура исчезает, т. е. Д5стр—>0, то можно предположить, что при кристаллизации она возникает. При этом, согласно (2.11) и (2.12), внутренние напряжения, создаваемые структурными элементами, уравновешивают внешние (силу гравитации, атмосферное давление, поверхностное натяжение) при минимуме строительного материала - энергии дефектов кристаллического строения. Подобное утверждение помогает сформулировать принцип самоорганизации - образования структур в термодинамических системах система образует структуру, т.е. определенным образом располагает свои энер- гозаряженные элементы, чтобы при минимуме запасенной (диссипироеанной) энергии уравновесить внешние возмущения. Как только внешние условия изменяются, система образует новую структуру (новый тип структуры, новый порядок). При снятии внешних возмущений система сбрасывает структуру, стремясь опять же к минимуму энергии. Чем больше значение I А стр I, тем совершенней структура, тем дальше система от равновесного состояния.  [c.63]

Сурьма и олово отличаются по плотности, поэтому сплавы этих. металлов способны к значительной ликвации. Для предупреждения этого дефекта в баббиты вводят медь. Она образует с сурьмой химическое соединение СндЗн. Это соединение имеет более высокую температуру плавления и кристаллизуется первым, образуя разветвленные дендриты, которые препятствуют ликвации  [c.418]

При сварке плавлением наиболее частые дефекты формы и размеров сварных соединений — неполномерность шва, его неравномерные ширина и высота, крупная чешуйчатость, бугристость, седловины. При ручной и полуавтоматической сварке дефекты могут появиться в результате недостаточной квалификации сварщика, нарушения технологических приемов, плохого качества электродов и других сварочных материалов. При автоматической сварке дефекты могут быть следствием колебания напряжения в сети, проскальзывания проволоки в подающих роликах, неравномерной скорости сварки из-за люфтов в механизме передвижения, неправильного угла наклона электрода, протекания жидкого металла в зазор.  [c.248]

В ионных кристаллах характерная для металлов подвижность электронов отсутствует Это означает, что у ионных кристаллов нельзя ожидать появления металлических свойств. Ионные вещества, например LiF, Na l, образуют кристаллы правильной формы с четкими гранями. Чистые кристаллы таких твердых веществ обьнно прозрачны и бесцветны, но они мопт быть окрашены очень небольшими добавками примесей. Такое же действие оказывают дефекты, имеющиеся в кристаллической решетке. Большинство ионных кристаалов имеют высокие температуры плавления.  [c.29]


При разливке стали под жидким шлаком, а также при электрошлаковом переплаве на поверхности слитков стали типа Х18Н10Т встречаются дефекты в виде зали-вин металла за шлаковый гарниссаж. Дефект образуется при замедленной кристаллизации поверхностной корки слитка, которая не может выдержать давление жидкой металлической ванны. Выше указывалось, что при разливке в изложницы необходима их тщательная чистка от остатков шлака, при ЭШП следует снижать скорость на-плавления.  [c.265]


Смотреть страницы где упоминается термин Плавление, дефекты металлов : [c.55]    [c.113]    [c.660]    [c.109]    [c.213]    [c.134]    [c.164]    [c.165]    [c.204]    [c.571]    [c.55]    [c.222]    [c.272]    [c.153]   
Конструкционные материалы Энциклопедия (1965) -- [ c.258 ]



ПОИСК



Металлы дефекты

Плавление

Плавление металлов

Сыр плавленый



© 2025 Mash-xxl.info Реклама на сайте