Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Катодная защита в морской воде

У сплавов, стойкость которых обусловлена преимущественно образованием защитных слоев (алюминиевая латунь, медноникелевые сплавы) катодная защита в морской воде залечивает повреждения, вызванные эрозией под действием песка или образовавшиеся при закатке конденсаторных трубок. Цинковым и магниевым протекторам в этих случаях предпочитают железные, так как образующиеся продукты коррозии железа благоприятствуют залечиванию естественных защитных слоев [20].  [c.799]


Расход анодов для катодной защиты в морской воде [47]  [c.804]

Выделение хлора обычно сопровождается очень небольшой коррозией платины, поэтому платиновые аноды можно использовать в схемах катодной защиты в морской воде [22] и для производства хлора. Коррозия платины происходит, однако, в сильных кислых растворах при малых плотностях тока. Благодаря комплексообразующему действию хлор-ионов область коррозии на диаграмме потенциал —- pH (см. рис. 4.3) несколько увеличивается и потенциал анодов, используемых при небольших перенапряжениях, может оказываться в этой области. При повышении плотности тока перенапряжение возрастает и происходит пассивация платины. Скорости коррозии платиновых анодов в растворах хлоридов увеличиваются при наложении на постоянный ток значительной переменной составляющей [23].  [c.224]

В сжатой информационной форме в виде графиков и таблиц, а также пояснений к их использованию, представлен материал об электрохимических методах катодной защиты от коррозии. Описаны методы пассивной и катодной защиты. Приведены данные о гальваническом влиянии высокого напряжения и способы коррозионных измерений, необходимые сведения об измерительной технике, о локальной катодной защите, катодной защите в морской воде и внутренней катодной защите.  [c.159]

По характеру защиты черных металлов в атмосферных условиях кадмиевое покрытие является катодным, а в морской воде и атмосфере, насыщенной морскими испарениями, — анодным.  [c.649]

Наиболее широко покрытия, полученные методом погружения в расплав, применяют для работы при умеренно повышенных температурах, например для конструктивных элементов печей. Их также используют для защиты от атмосферной коррозии, однако при этом их применение ограниченно вследствие более высокой стоимости алюминия (по сравнению с цинковыми покрытиями) и непостоянства свойств. В мягких водах потенциал алюминия более положителен, чем у стали, и алюминий ведет себя как катодное покрытие. В морской воде и некоторых пресных водах, особенно при содержании в них СГ и S0 ", потенциал А1 сдвигается в более активную область, в результате чего меняется полярность пары,А1—Fe. В этих условиях покрытие А1 — анодное и обеспечивает протекторную защиту стали.  [c.194]

Вспучивание ферритных нержавеющих сталей наблюдалось, когда они были катодно защищены в морской воде. Вероятно, это происходило вследствие того, что были применены защитные плотности тока выше минимальной величины, необходимой для полной защиты. Если при контакте активных металлов с мартенситными нержавеющими сталями образуются гальванические пары, то нержавеющая сталь (катод) может разрушиться вследствие выделения на ней водорода. Такие разрушения наблюдались при лабораторных испытаниях [25]. Наблюдалось самопроизвольное растрескивание винтов из нержавеющей мартенситной стали вскоре после того, как они находились в контакте с алюминием в атмосфере морского побережья. Пропеллеры из упрочненной мартенситной нержавеющей стали, соприкасающиеся со стальным корпусом корабля, вскоре после пуска в эксплуатацию подверглись коррозионному растрескиванию. Сильно наклепанная аустенитная нержавеющая сталь 18-8 также может разрушаться в условиях, описанных для мартенситных сталей [26, 27]. В данном случае сульфиды ускоряют разрушение, и так как сплав при холодной обработке претерпевает фазовое превращение и образуется феррит, то наблюдаемый эффект может служить также примером водородного растрескивания.  [c.260]


Защитный эффект в отличие от разностного находит большое практическое применение в виде так называемой электрохимической катодной защиты, т. е. уменьшении или полном прекраш,ении электрохимической коррозии металла (например, углеродистой стали) в электролитах (например, в морской воде или грунте) присоединением к нему находящегося в том же электролите более электроотрицательного металла (например, магния, цинка или их сплавов), который при этом растворяется в качестве анода гальванической пары из двух металлов (рис. 198), или катодной поляризацией защищаемого металла от внешнего источника постоянного тока.  [c.295]

Катодная электрохимическая защита значительно снижает скорость коррозии при трении стали в морской воде, что, кстати, подтверждает механико-электрохимический механизм этого вида разрушения металла.  [c.340]

ЖЕРТВЕННЫЕ АНОДЫ. Если вспомогательный анод изготовлен из металла более активного (в соответствии с электрохимическим рядом напряжений), чем защищаемый, то в гальваническом элементе протекает ток — от электрода к защищаемому объекту. Источник приложенного тока (выпрямитель) можно не использовать, а электрод в этом случае называют протектором (рис. 12.2). В качестве протекторов для катодной защиты используют сплавы на основе магния или алюминия, реже — цинка. Протекторы, по существу, служат портативными источниками электроэнергии. Они особенно полезны, когда имеются трудности с подачей электроэнергии или когда сооружать специальную линию электропередачи нецелесообразно или неэкономично. Разность потенциалов разомкнутой цепи магния и стали составляет примерно 1 В (в морской воде магний имеет Е = —1,3 В), так что одним анодом может быть защищен только ограниченный участок трубопровода, особенно в грунтах с высоким удельным сопротивлением. Столь небольшая разность потенциалов иногда  [c.218]

Катодная защита. Наилучший эффект достигается при поляризации до значения коррозионного потенциала активного металла в щели. Достижение этого значения потенциала уменьшает коррозию, но не сводит ее к нулю. В морской воде для изготовления жертвенных анодов успешно применяют железо, а также еще менее благородные металлы [45].  [c.316]

Железо корродирует в морской воде со скоростью 2,5 г/(м -сут). Рассчитайте минимальную начальную плотность тока (в А/м ), необходимую для полной катодной защиты принять, что коррозия идет с кислородной деполяризацией.  [c.393]

Влияние ги про динамических условий на катодную защиту стали в морской воде 38 292  [c.38]

Известно, что одной из основных причин, обусловливающих ухудшение механических свойств металла при его контакте с растворами кислот (кислотное травление металлов, кислотная обработка теплосилового оборудования), с влажным газообразным сероводородом, с водными растворами и с двухфазными системами, содержащими сероводород (газо- и нефтепроводы), а также в условиях катодной поляризации (катодное травление, нанесение гальванических покрытий, катодная защита металлоизделий в морской воде), является наводороживание металла [45 52  [c.41]

Системы катодной защиты от коррозии следует проектировать всегда с большим запасом. Затраты на завышенную мощность станции катодной защиты в сравнении со стоимостью всего объекта невелики к тому же и срок службы анодов (анодных заземлителей) увеличится, если имеющиеся резервы мощности не будут использоваться. Более мощная защитная установка дает возможность осуществлять предварительную поляризацию в случае объектов без покрытия. В случае поверхностей с покрытием запас мощности позволит компенсировать повреждения или старение защитного слоя. Далее описываются некоторые примеры катодной защиты сооружений, соприкасающихся с морской водой.  [c.345]

Для контроля эффективности катодной защиты измеряют потенциал защищаемого сооружения в среде. В случае сооружений, расположенных в морской воде, электрод подводят возможно ближе к защищаемому объекту, например с лодки или подвешиванием измерительного электрода на постоянно закрепленных тросах вдоль несущих труб, при помощи стационарно установленных измерительных электродов или с привлечением водолазов. Как уже отмечалось, прерывать катодный защитный ток нет необходимости, так как падения напряжения в морской воде невелики. Однако поблизости от анодов измерение обычно дает слишком большой отрицательный потенциал. В общем случае силы токов и потенциалы систем катодной защиты сооружений в прибрежном шельфе контролируют ежемесячно. Преобразователи систем катодной защиты на мостах для разгрузки танкеров должны располагаться по возможности за пределами взрывоопасной зоны. В ином случае они должны изготовляться во взрывобезопасном исполнении [17].  [c.351]


В последние годы внутренняя катодная защита резервуаров для воды приобретает все большее значение. Защита применяется для резервуаров для свежей питьевой воды, для балластных танков с морской водой и танков для хранения воды, для резервуаров питательной котловой воды и т. д. Внутренняя защита особенно эффективна и экономична в сочетании с подходящими покрытиями также и для установок сложной конструкции. Размещение анодов принимается в зависимости от формы и размеров резервуаров. В случае прямоугольных резервуаров защита в области кромок и углов связана с трудностями. Здесь для обеспечения достаточного распределения тока целесообразно применять кольцевые электроды [7]. Внутренняя защита цилиндрических пустотелых резервуаров осуществляется проще.  [c.382]

В случае подземных и гидротехнических сооружений, а также реакторов анодная защита не может конкурировать с катодной. Так, при анодной защите некоторых алюминиевых сплавов и нержавеющей стали в морской воде наблюдается довольно высокий защитный эффект, необходимая плотность тока  [c.70]

Теоретически полная защита металла от коррозии при катодной поляризации возможна тогда, когда металлу будет сообщен потенциал более отрицательный, чем термодинамический потенциал металла. Величина защитного эффекта при некотором смещении потенциала Дф определяется катодной и анодной поляризуемостью Дф/Дг системы. Катодная защита эффективна тогда, когда металл обладает большой катодной поляризуемостью и малой анодной, т. е. для смещения потенциала системы до потенциала защиты фз нужны относительно небольшие токи. Во всех случаях электрохимическая защита эффективна в средах с достаточно высокой электропроводностью. Как правило, ее широко применяют для защиты от коррозии в морской воде, в почвах, в грунтовых водах и т. п.  [c.141]

Для защиты оборудования, работающего в морской воде, к которому кроме теплообменников относятся также водозаборные и перекачивающие насосы, магистральные трубы, фильтры, установки опреснения и т. д., чаще всего используют электрохимические методы, такие, как катодная или протекторная защита. Техника протекторной защиты оборудования была подробно рассмотрена в 91. Способы катодной защиты оборудования описаны в гл. 4.  [c.30]

Сплав 17—4РН находит применение в летательных аппаратах, работающих в морских условиях, а также в конструкциях, связанных с погружением. В отличие от обычных мартенситных сталей этот сплав при экспозиции в морской воде позволяет использовать катодную защиту для предотвращения питтинговой и щелевой коррозии.  [c.71]

Во многих случаях коррозию металлических конструкций, погружаемых в морскую воду, можно значительно уменьшить с помощью катодной защиты. Защита стали, например, обеспечивается при потенциале около—0,80 В (в. к. э.). Наряду с различными покрытиями катодная защита является широко распространенным средством борьбы с коррозией подводных конструкций.  [c.168]

Поверхность стальных конструкций в морской воде обычно покрывают краской, стойкой к щелочам. В сочетании с катодной защитой такое покрытие является эффективным методом предотвращения коррозии. Плотность наложенного тока должна быть гораздо меньше, чем в случае неокрашенной стали, поскольку защита необходима только для  [c.170]

Известно, что при катодной поляризации в морской воде на поверхности металла осаждается гидрооксидно-солевой осадок, чего не наблюдается при испытании в водных растворах Na I, в которых отсутствуют ионы кальция и магния. С увеличением электросопротивления такого осадка снижается защитная плотность тока, что можно эффективно использовать при выборе режимов электрохимической защиты сталей от коррозионной усталости.  [c.193]

Тонкое гальваническое покрытие титана платиной может служить своеобразным методом анодной защиты титана в морской воде [179]. Известно, что в морской воде при поляризации титана большими токами наступает пробой пассивной пленки хлор-ионами и происходит питтинговая коррозия. Из рис. 117 видно, что при поляризации потенциал платинированного титана до значительной плотности анодного тока не смещается в положительную сторону, следовательно, металл остается в устойчивом состоянии. Таким образом, в условиях ирименения титана в морской воде или других нейтральных хлоридных растворах при интенсивной анодной поляризации платинирование поверхности будет хорошей защитой. Подобное платинирование поверхности титана используют для изготовления нерастворяющихся устойчивых титановых анодов при катодной защите в морской воде или растворах хлоридов.  [c.168]

Катодная и Протекторная защита относятся к наиболее дейст-. венным методам борьбы с коррозией. Ей использупт для ааш.ите подземьшХ металлических конструкций, в частности трубопроводов, конструкций, погруженных в морскую воду (морских эстакад), стальных укреплений набережных, подводных частей судов, хи- мичесной аппаратуры и т.д.  [c.61]

На протекторы из магниевых сплавов для катодной защиты в США каждый год потребляют примерно 5,5 млн. кг магния [101. Магниевые аноды часто легируют 6 % А1 и 3 % Zn для уменьшения питтингообразования и увеличения выхода по току. Достоинством магнйя высокой чистоты, содержащего 1 % Мп, является более высокий потенциал (с более высоким выходным анодным током) [11 ]. В морской воде значения выхода по току обоих сплавов близки, однако в обычных грунтах этот показатель для сплава с 1 % Мп несколько ниже. Практически токоотдача магниевых анодов в среднем составляет около 1100 А-ч/кг по сравнению с теоретическим значением 2200 А-ч/кг. Схема стального бака для горячей воды с магниевым анодом, представлена на рис. 12.3. Применение таких стержней может продлить жизнь стальных емкостей на несколько лет, при условии их замены в требуемые сроки. Степень защиты выше в воде с высокой элек-  [c.219]


Следовательно, железо, имеющее в морской воде коррозионный потенциал около —0,4 В, непригодно для использования в качестве протектора для катодно защищаемого алюминия, в отличие от цинка, который имеет более подходящий коррозионный потенциал, близкий —0,8 В. Для нержавеющей стали 18-8 критический потенциал в 3 % растворе Na l равен 0,21 В, для никеля — около 0,23 В. Следовательно, контакт этих металлов с имеющими соответствующую площадь электродами из железа или цинка может обеспечить им в морской воде эффективную катодную защиту, предупреждающую питтинговую коррозию. Элементы создаваемых конструкций (например, кораблей и шельфовых нефтедобывающих платформ) иногда специально проектируют таким образом, чтобы можно было успешно использовать гальванические пары такого рода.  [c.227]

Площадь основного металла, на которую распространяется катодная защита, зависит от электропроводимости среды. В центре трехмиллиметрового дефекта в цинковом покрытии по стали, помещенной, например, в дистиллированную или мягкую воду (с низкой электропроводимостью), может наблюдаться ржавление основного металла. Однако в морской воде, которая является хорошим проводником, сталь защищается цинком на расстоянии в несколько дециметров от края цинкового покрытия. Такое различие в поведении обусловлено тем, что в электропроводящей среде плотность тока, необходимая для катодной защиты, обеспечивается на значительном расстоянии, в то время как в среде с низкой электропроводимостью плотность катодного тока быстро падает по мере удаления от анода.  [c.233]

КЛАССИФИКАЦИЯ И ОБЛАСТИ ПРИМЕНЕНИЯ. В зависимости от содержания цинка латуни носят разные названия. Сплав Zn—Си с 40% Zn, мюнц-металл (а-,р-латуни) применяют преимущественно в конденсаторных системах, в которых в качестве охлаждающей среды используют пресную воду (например, воду Великих озер). Морская латунь имеет близкий состав, но содержит еще 1 % Sn. Марганцовистая бронза также аналогична по составу, но дополнительно содержит по 1 % Sn, Fe и РЬ. Помимо прочего, ее используют для изготовления гребных винтов. Обесцинкование гребных винтов из марганцовистой бронзы в морской воде в какой-то степени предотвращается катодной защитой при контакте винтов со стальным корпусом судна.  [c.331]

Легирование никеля медью несколько повышает стойкость металла в восстановительных средах (например, в неокислительных кислотах). Ввиду повышенной стойкости меди к питтингу, склонность сплавов никель—медь к питтингообразованию в морской воде ниже, чем у никеля, а сами питтинги в большинстве случаев неглубокие. При содержании более 60—70 ат. % Си (62—72 % по массе) сплав теряет характерную для никеля способность пассивироваться и по своему поведению приближается к меди (см. разд. 5.6.1), сохраняя, однако, заметно более высокую стойкость к ударной коррозии. Медно-никелевые сплавы с 10—30 % Ni (купроникель) не подвергаются питтингу в неподвижной морской воде и обладают высокой стойкостью в быстро движущейся морской воде. Такие сплавы, содержаш,ие кроме того от нескольких десятых до 1,75 % Fe, что еще более повышает стойкость к ударной коррозии, нашли применение для труб конденсаторов, работающих на морской воде. Сплав с 70 % Ni (мо-нель) подвержен питтингу в стоячей морской воде, и его лучше всего применять только в быстро движущейся аэрированной морской воде, где он равномерно пассивируется. Питтинг не образуется в условиях, когда обеспечивается катодная защита, например при контакте сплава с более активным металлом, таким как железо.  [c.361]

Для защиты от щелевой коррозии можно использовать катодную или электрохимическую защиту. Значения максимальной глубины разрушения в щели на нержавеющих сталях и иикельмедного сплава в морской воде без защиты от щелевой коррозии следующие  [c.14]

Описаны основы коррозии и электрохимической защиты, теоретические основы и практика электрохимических измерений. Большое внимание уделено измерению потенциала в условиях подземной катодной защиты. Рассмотрены вопросы пассивной защиты, защиты протекторами и активной защиты как подземных сооружений, так н металлическпх сооружений в морской воде, а также защиты корпусов судов и отдельных элементов конструкций судов. Проанализировано влияние блуждающих токов на коррозию и методы дренажной защиты. Приведены сведения о защите скважин и внутренней защите промышленного оборудования.  [c.4]

Не известно, был ли знаком сэр Хэмфри Деви с этими соображениями. Известно лишь, что он принял заказ от британского адмиралтейства на разработку способа защиты медной обшивки деревянных судов (введенной в 1761 г.) от коррозии в морской воде. Во время своих многочисленных лабораторных опытов он обнаружил эффект катодной за-щиты меди при помощи цинка или железа [25]. Деви еще в 1812 г. выдвинул гипотезу, что химические в электрические изменения идентичны или по крайней мере зависят от одного и того же свойства вещества. Он считал, что движущие силы химических реакций могут быть уменьшены или увеличены изменением электрического состояния вещества. Различные вещества могут соединяться между собой только в том случае, если они имеют различные (т. е. противоположные) электрические заряды. Если вещество, первоначально положительное, будет искусственно заряжено отрицательно, то силы связи в нем будут нарушены и оно не сможет более вступать ни в какие коррозионные соединения.  [c.32]

Ученик Деви Майкл Фарадей, ставший впоследствии весьма знаменитым, принимал участие во многих из этих опытов. Много лет спустя (Деви уехал в 1825 г. в Италию и через четыре года умер в Женеве) Фарадей исследовал коррозию чугунного литья в морской воде. Он установил, что чугун корродирует у поверхности воды сильнее, чем на большой глубине. Фарадей в 1834 г. обнаружил количественную связь между коррозионным разрушением металла и силой электрического тока. При этом он разработал научные основы электролиза, а в принципе также и катодной защиты.  [c.33]

Компактную (цельную) платину как материал для анодов на станциях катодной защиты предложил Коттон [14]. Такие аноды при подходящих условиях могут работать с плотностью анодного тока до Ю" А-м-2. Действующее напряжение практически не ограничивается, а скорость коррозии (в предположении об оптимальности условий) очень мала — порядка нескольких миллиграммов на 1 А в год. Впрочем, это обеспечивается преимущественно при сравнительно низких плотностях тока в морской воде при эффективном отводе образующейся подхлор-ной кислоты. Если приходится применять благородные материалы для получения высоких плотностей анодного тока в плохо проводящих электролитах, то анодное растворение платины увеличивается вследствие образования хлорокомплексов и в таком случае становится непосредственно зависящим от плотности тока [15—17]. Кроме того, в воде с низким содержанием хлоридов при преобладании образования кислорода на поверхностях анодов образуется предпочтительно легче растворимый окисел РЮг вместо PtO, вследствие чего расход платины тоже увеличивается. Тем не менее потери остаются малыми, так что цельная платина может практически считаться идеальным материалом для анодов. Однако такие аноды ввиду большой плотности платины (21, 45 г см-2) получаются очень тяжелыми, а ввиду весьма высоких цен на платину (28 марок ФРГ за 1 г по состоянию на сентябрь 1979 г.) они неэкономичны. Вместо них применяют аноды из других несущих металлов, рабочая поверхность которых покрыта платиной.  [c.204]


Катодная защита сооружений, соприкасающихся с морской водой, например шпунтовых стенок, шлюзов, причалов, буровых или других площадок (выполняемых преимущественно из сталей типа St37—St52), практикуется в настоящее время в довольно широких масштабах. Покрытие таких сооружений само по себе уже через несколько лет обычно не обеспечивает защиты от коррозии. Скорость коррозии стали в морской воде (см. разделы 4.1 и 18.1) зависит от содерлония кислорода в воде, условий ее движения, температуры, солесодержания (которое в океанах практически постоянно и составляет 34 г-л , что соответствует удельному электросопротивлению р=0,3 Ом-м) и лишь в незначительной степени от величины pH. На рис. 17.1 показаны некоторые физические и химические свойства морской воды в зависимости от глубины. Классификационные общества, в частности Регистр Ллойда (Великобритания), Дет Норске Веритас (Норвегия) и Герман-  [c.337]

Измерительные электроды для систем катодной защиты судов с защитными установками представляют собой прочные электроды сравнения (см. раздел 3.2 и табл. 3.1), постоянно находящиеся в морской воде при съеме небольших токов для целей регулирования они не должны подвергаться поляризации. Обычно применяемые в остальных случаях медносульфатные и каломелевые электроды сравнения могут быть использованы только для контрольных измерений. Никакие электроды сравнения с электролитом и диафрагмой (мембраной) непригодны для использования в качестве измерительных электродов длительного действия для защитных преобразователей с регулированием потенциала. Измерительными электродами могут быть только электроды типа металл — среда, имеющие достаточно стабильный потенциал. Электрод серебро — хлорид серебра имеет потенциал, зависящий от концентрации ионов хлора в воде [см. формулу (2.29)], что необходимо учитывать введением соответствующих поправок [4]. Наилучшим образом зарекомендовали себя цинковые электроды. Измерительные электроды похожи на протекторы, но меньше их по размерам. Они имеют постоянный стационарный потенциал, мало подвергаются поляризации, а в случае образования поверхностного слоя могут быть при необходимости регенерированы анодным толчком (импульсом) тока. Срок их службы составляет не менее пяти лет.  [c.366]

Там, где присутствует электрохимический элемент, омическое перенапряжение уменьшает значение максимального тока, создаваемого замкнутым элементом. Например, в элементе Да-ниеля, если концентрация ионов Си + и Zn + поддерживается равномерной, тах снижается по мере уменьшения концентрации благодаря возрастанию сопротивления растворов, хотя обратимая ЭДС элемента будет неизменной. При катодной защите стали в морской воде ток между анодом и сталью уменьшается с течением времени в результате образования известкового осадка (смеси СаСОз и Mg (ОН) 2) на поверхности стали. Если использовать алюминий в качестве протектора, на его поверхности может образоваться пленка AI2O3 Н2О, и ток уменьшится до значения, недостаточного для защиты стали. Очевидно, что такие факторы, как неоднородность металлического покрытия и (или) образование пленок или осадка продуктов коррозии, могут значительно уменьшить гальванический ток, проходящий между двумя металлами.  [c.27]

Алюминиевые материалы в воде можно предохранить от питтинга ( помощью катодной защиты, если поддерживать электродный потен циал ниже потенциала питтинговой коррозии в данной систем материал - среда. Однако катодное выделение водорода ведет t повышению pH, и при чрезмерном его повышении алюминий може-подвергнуться коррозии. Такой перезащиты следует избегать, следз за тем, чтобы электродный потенциал не опускался ниж< определенной критической величины в почве и пресной воде - эк -1,2В (по отношению к медно-сульфатному электроду). На практике алюминий может быть защищен с помощью гальванически жертвенных анодов, например цинковых или цинкалюминиевы> анодов в морской воде магниевых анодов для конструкций в пресной или солоноватой воде, а также для неокрашенных поверхностей пол землей цинковых - для окрашенных подземных конструкций. Катодная защита может быть достигнута также путем плакирования менее благородным металлом, чем основа. Для нелегированногс алюминия это может быть, например покрытие из A Zn .  [c.128]

В средах хлоридов коррозионное растрескивание возникает в нейтральных растворах хлоридов при температуре выше 80 С. Повышение стойкости против язвенной и щелевой коррозии обеспечивается дополнительным легированием стали никелем и молибденом (сталь 08X17HI3M2T). Однако и в этом случае надежная работа деталей из этой стали в морской воде возможна при обеспечении катодной защиты протекторами из углеродистой стали. Повышение стойкости против коррозионного растрескивания обеспечивается дальнейшим увеличением содержания хрома и никеля до 40—50 % (стали типа Х32Н45 и др.).  [c.70]

Очень важное применение катодная защита находит для подавления местных видов коррозии медных сплавов, нержавеющих сталей в растворах хлоридов и в морской воде. Применение протекторов пз углеродистой стали, выполняемых в виде отдельных деталей конструкции или специальных протекторов, обеспечивает защиту медных сплавов от струевой и язвенной коррозии, нержавеющих сталей от питтинговой коррозии. Перспективно направление по созданию композитных конструкций, где за счет других деталей, элементов обеспечивается протекторная катодная защита наиболее ответственных узлов (запорные органы клапанов, рабочие колеса насосов, теплообменные трубы и т. д.).  [c.144]

Сплав 17—4РН служит примером мартенситной дисперсионно-твер-деющей стали. После термообработки на среднюю прочность (старение при 550 °С или выше) этот сплав обладает хорошей стойкостью в морской воде. Подобно аустенитным сталям, он сохраняет пассивность в быстром потоке. В неподвижной воде для предупреждения питтинговой и щелевой коррозии можно (и следует) применять катодную защиту. Имеющийся опыт эксплуатации подтверждает высокую коррозионную стойкость этого сплава при условии правильного его применения.  [c.64]

Сг (нихром) или Инконель 600, значительно упрочняет пассивную пленку, но все же не в такой степени, чтобы предотвратить щелевую п питтипговую коррозию в морской воде. Поэтому сплавы никель—хром и никель—хром—железо можно использовать в условиях погружения только в тех случаях, когда приходится иметь дело с быстрым потоком воды, скорость которого достаточна для поддержания пассивности, или же когда применяется катодная защита. В целом названные сплавы более стойки к местной коррозии, чем никель. При определенных условиях для развития  [c.85]

Высокопрочные алюминиевые сплавы серий 2000 и 7000 обычно не применяются в условиях погружения. В тех редких случаях, когда высокопрочные сплавы все же используются, их дополнительно защищают путем окраски или с помощью катодной защиты. Такие силавы, как Х7002-Т6 II 7178-Т6, склонны к расслаивающей коррозии в морской воде [91]. В данном случае это одна из форм межкристаллитного разрушения деформируемых материалов, связанная с увеличением разме-  [c.142]

Рис. 77. Влияние катодной защиты на коррозию алюминиевых сплавов серий 3000 н 5000 при 368-дневной экспозиции в морской воде (Ки-Уэст, Флорида, США) [91] Рис. 77. Влияние <a href="/info/6573">катодной защиты</a> на <a href="/info/163075">коррозию алюминиевых сплавов</a> серий 3000 н 5000 при 368-дневной экспозиции в <a href="/info/39699">морской воде</a> (Ки-Уэст, Флорида, США) [91]
В морской воде защита стальных конструкций обеспечивается при потенциале —0,80 В (н. к. э.). При более катодных потенциалах, например —1,10 В, возникает опасность появления избыточных гидроксил-ионов и большого объема образующегося водорода. Амфотериые металлы и некоторые защитные органические покрытия разрушаются под действием щелочей. Эндосмотические эффекты и образование водорода под слоем краски могут вызывать ее отслаивание. Эти явления часто наблюдаются на участках конструкций, расположенных вблизи анода. Выделяющийся водород может разрушать сталь, особенно высокопрочную низколегированную. Углеродистые стали обычно не подвергаются водородному разрушению в условиях катодной защиты. При избыточной Катодной защите выделение водорода может приводить к катастрофическому растрескиванию высокопрочных сталей (с пределом текучести выше 1000 МПа) при наличии растягивающих напряжений (водородное растрескивание под напряжением). Одним из ядов , способствующих ускоренному проникновению водорода в металл, являются сульфиды, присутствующие в загрязненной морской воде, а также в донных отложениях, где могут обитать сульфатвосстанавливающие бактерии.  [c.171]



Смотреть страницы где упоминается термин Катодная защита в морской воде : [c.239]    [c.160]    [c.251]    [c.350]   
Кислородная коррозия оборудования химических производств (1985) -- [ c.90 ]



ПОИСК



V катодная

Еж морской

Катодная защита

Морская вода

Морские воды



© 2025 Mash-xxl.info Реклама на сайте