Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Охрупчивание высокотемпературное

Окисление металла шва 67, 68 Охрупчивание высокотемпературное 267, 310  [c.523]

В условиях неизотермического нагружения, когда полуцикл растяжения протекает в высокотемпературной части цикла нагрева, особенно повышается роль пластичности. Показательны в этом отношении данные, приведенные на рис. 3, б и полученные в разных контрастных условиях неизотермического нагружения. Например, сравнение кривых 5 и б на рис. 3, б показывает, что более сильное охрупчивание сплава при 973 К приводит к существенному (до трех раз) снижению долговечности в сравнении с аналогичными данными для температурного режима с максимальной температурой 1133 К. Характерно, однако, что уровень располагаемой пластичности, по-видимому, на сопротивление малоцикловой усталости влияет незначительно, если полуцикл сжатия механического нагружения приходится на диапазон высокотемпературной части термического цикла нагрева. Об этом свидетельствует близость данных по малоцикловой неизотермической усталости (см. рис. 3, б, кривые 1—4).  [c.39]


Глава начинается с достаточно элементарного анализа проблемы ползучести и разрушения конструкционных сплавов под напряжением при высоких температурах и описания различных эффектов, наблюдаемых при воздействии внешней среды. Затем следует краткий обзор высокотемпературной коррозии и обсуждение многочисленных путей ее влияния на механические свойства сплавов, после чего уже непосредственно рассмотрены коррозионная ползучесть и разрушение материалов вследствие коррозии под напряжением. Следует отметить, что в данной главе рассматриваются процессы, протекающие при высоких температурах, как правило выше 0,5 Тт, где Тт — абсолютная температура плавления рассматриваемого сплава. Поэтому в круг обсуждаемых вопросов не входят такие сложные явления, как коррозионное растрескивание под напряжением, охрупчивание при контакте с жидким металлом или понижение сопротивления излому, вызванное поверхностно-активными веществами. По этим вопросам имеются авторитетные обзоры [8, 9].  [c.9]

Было показано, что покрытие другими металлами, например цинком или никелем, служит в качестве удовлетворительного метода устранения высокотемпературного солевого коррозионного растрескивания. Применение цинковых покрытий может вызывать сомнения, поскольку цинк в твердом и жидком состояниях способствует охрупчиванию основного металла.  [c.431]

Характер и интенсивность деформирования зависят от геометрии конструктивного элемента, времени вьщержки под постоянной нагрузкой, рабочих температур и номинальной нагрузки. В мембранной зоне происходит накопление деформаций при циклической ползучести, в зоне концентрации — знакопеременное циклическое деформирование. При этом достигается соответственно предельное состояние по условиям квазистатической (длительной статической) прочности или по условиям малоцикловой (длительной малоцикловой) прочности. Характерно, что в мембранной зоне длительное статическое разрушение в условиях повторного нагружения может происходить при различных значениях односторонне накопленных деформаций в зависимости от деформационной способности материала и процессов высокотемпературного старения и охрупчивания.  [c.123]

Изменение механических свойств (низко- и высокотемпературное охрупчивание)  [c.12]

Проявляться такие явления, как ускоренная радиационная ползучесть, высокотемпературное радиационное охрупчивание и др.  [c.13]


ВЫСОКОТЕМПЕРАТУРНОЕ РАДИАЦИОННОЕ ОХРУПЧИВАНИЕ  [c.95]

Высокотемпературное радиационное охрупчивание (ВТРО) является одним из факторов, ограничивающих работоспособность материалов активной зоны ядерных реакторов и проектируемых термоядерных установок.  [c.95]

ВТРО было открыто сравнительно недавно — в 1963 г. — одновременно советскими и зарубежными исследователями [981. Это явление заключается в значительном и необратимом снижении пластичности облученного материала при его испытании при температурах выше 0,5 Тал,- ВТРО наблюдали на аустенитных сталях [1 — 8, 13—24, 27—43, 55—721, никеле и его сплавах [6, 9, 13, 18, 21, 23, 25, 26, 33, 361, алюминии [32], ванадии [101, меди и ее сплавах [521, ферритных сталях [21, 39, 441 и др. Высокотемпературное радиационное охрупчивание проявляется только на поликри-сталлических материалах на монокристаллах это явление не наблюдается [25], что свидетельствует о связи ВТРО с процессами, происходящими на границе зерен. Действительно, материалы, на которых наблюдается ВТРО, разрушаются преимущественно по границам зерен. Высокотемпературное радиационное охрупчивание в отличие от обычного низкотемпературного радиационного охрупчивания не может быть устранено длительным отжигом при высоких температурах.  [c.95]

В табл. 8 приведено изменение пластичности оболочечных сталей, облученных в различных реакторах. Как видно из приведенных данных, при дозах облучения свыше 10 н/см аустенитные нержавеющие стали имеют практически хрупкое разрушение, что существенно снижает надежность изделий в эксплуатации. Поэтому в нашей стране и за рубежом проводится широкий комплекс исследований, посвященных изучению этого явления. Анализ литературных данных позволяет выделить в основном две точки зрения на механизм ВТРО конструкционных материалов 1) причиной ВТРО является гелий, образующийся при облучении в результате ядерных реакций [4, 6, 15, 26, 90, 911 2) отрицание существенной роли гелия в высокотемпературном радиационном охрупчивании 13].  [c.95]

Большинство гипотез о механизме высокотемпературного радиационного охрупчивания основывается на результатах, полу-  [c.95]

Глава 4. Высокотемпературное радиационное охрупчивание  [c.97]

Таким образом, высокотемпературное охрупчивание в материалах наблюдается только тогда, когда в материал имплантирован гелий. Это подтверждается экспериментально ВТРО наблюдается после облучения в реакторе (образование гелия за счет (п, а)-реак-ций), высокотемпературного электронного облучения (образование гелия за счет у, а)-реакций) и облучения а-частицами.  [c.98]

Дефекты, вызванные облучением, оказывают существенное влияние на механизм деформации и разрушения материалов. На рис. 38 [87] представлены кривые напряжение — деформация для материала, облученного и испытанного при низких и высоких температурах. Видно, что в образцах, облученных и испытанных при низких температурах Т < Гпл), наблюдается повышение текучести, предела прочности и снижение удлинения. Высокотемпературный отжиг снимает низкотемпературное радиационное охрупчивание. Облучение и испытание образцов при температурах, когда развивается ВТРО (Т > 0,57 пл), практически не изменяют предел текучести (по сравнению с необлученными) и снижают удлинение (при умеренных дозах облучения).  [c.98]

Анализ экспериментальных данных не позволяет выявить существенное влияние температуры облучения на высокотемпературное радиационное охрупчивание.  [c.98]

Эффект высокотемпературного радиационного охрупчивания проявляется после облучения материала до так называемой пороговой дозы. Пороговая доза зависит от химического состава материала, типа кристаллической решетки, размера зерна, меха-  [c.101]

Гелий оказывает существенное влияние не только на высокотемпературное радиационное охрупчивание, но и на распухание металлов. Разработаны установки, позволяющие измерять  [c.102]

Изменение относительного удлинения сталей, облученных при 50° С до дозы 5 10 н/см (тепловые нейтроны), показано на рис. 46 [55]. Приведенные данные позволяют утверждать, что а — 7-переход оказывает существенное влияние на высокотемпературное радиационное охрупчивание. Для хромистых сталей ВТРО наблюдается только в у-фазе. У молибденовой стали влияние превращения на ВТРО не обнаружено.  [c.107]


Однако размер зерна не всегда определяет склонность материала к ВТРО. В работе [96] исследовалось влияние температуры рекристаллизации на высокотемпературное охрупчивание стали 316, облученной в реакторе до дозы 1,7 10 н/см (2,3 10 тепл, н/см ). Пластичность образцов, рекристаллизованных при 950° С в течение 10—60 мин, оказалась выше, чем у рекристаллизованных при 1100° С в течение 2 мин, хотя размеры зерен незначительно различались (соответственно 24—35 и 48 мкм). В образцах, рекристаллизованных при 950° С, на границах зерен обнаружены выделения карбидов, тогда как после растворяющего отжига при 1100 С они не выявлены. Предполагается что мелкодисперсные выделения карбидов на границах зерен снижают высокотемпературное радиационное охрупчивание, затрудняя зернограничное растрескивание [43, 96].  [c.109]

В предыдуш,их разделах показано, что ВТРО сложным образом зависит от многих факторов. Тем не менее, анализируя накопленные экспериментальные данные, можно оценить влияние различных параметров на ВТРО конструкционных материалов и проанализировать гипотезы о механизме высокотемпературного радиационного охрупчивания.  [c.110]

Определенный вклад в высокотемпературное радиационное охрупчивание сталей вносят также процессы упрочнения тела зерна за счет выделений из неравновесного а-твердого раствора избыточных фаз и др.  [c.112]

Таким образом, высокотемпературное радиационное охрупчивание — сложное явление. Однако при создании перспективных реакторов на быстрых нейтронах и термоядерных реакторов необходимо разрабатывать новые материалы с минимальной склонностью к ВТРО. Без решения этой проблемы невозможно создать экономически выгодные в эксплуатации атомные и термоядерные реакторы.  [c.112]

Низкие скорости охлаждения околошовпой зоны при электро-шлаковой сварке приводят к длительному пребыванию ее в области высоких температур, вызывающих рост зерна и охрупчивание металла. Поэтому после алектрошлаковой сварки низколегированных сталей с повышенным содержанием углерода и среднелегированных высокопрочных сталей необходима высокотемпературная термообработка сваренных изделий для восстановления механических свойств до необходимого уровня. Время с момента окончания сварки до проведения термообработки должно быть регламентировано.  [c.257]

Предполагается, что и в этом случае галоидные ионы и водород в качестве опасных компонентов ответственны за высокотемпературное растрескивание. Предположение о роли водорода бы ло впервые сделано в работе [139], авторы которой остались его наиболее активными сторонниками. В основе предложенной гипотезы лежит образование водорода в результате пирогидролиза хлорида. Этот водород абсорбируется либо в металле, либо в области концентрации напряжений в вершине трещины, снижая энергию разрушения. Доказательства, приводимые в пользу механизма водородного охрупчивания, следующие 1) водород образуется в процессе высокотемпературной солевой коррозии 2) данные ASTM [144] и результаты [148] показывают, что водород может абсорбироваться в условиях высокотемпературного солевого коррозионного растрескивания 3) при комнатной температуре  [c.402]

В качестве расчетных характеристик, необходимых для оценки меры КВазистатических повреждений, принимают предельную пластическую деформацию е (0. характеризующую деформационную способность материала. В общем случае предельные пластические деформации при длительном высокотемпературном нагружении зависят от процессов деформационного старения и охрупчивания, а также от вида НДС. Эту зависимость необходимо учитьшать при оценке доли квазистати-ческих поврежедений.  [c.6]

НТРО н ВТРО — низко- я высокотемпературное радиационное охрупчивание.  [c.12]

В настоящее время распространены главным образом две точки зрения на механизм ВТРО. Первоначальный механизм ВТРО был предложен Барнсом [6], который предположил, что образующийся в материале в результате (/г, а)-реакций гелий при повышенных температурах мигрирует к границам зерен и, выделяясь на них в виде пузырьков, разупрочняет их и тем самым способствует падению пластичности материала. Существует другая, выдвинутая учеными НИИАР , точка зрения 17], согласно которой в основе высокотемпературного радиационного охрупчивания лежат те же процессы, ответственные за охрупчивание без облучения, но облучение ускоряет этот процесс.  [c.15]

Суш,ественную роль гелия в явлении высокотемпературного радиационного охрупчивания также нельзя отрицать — об этом свидетельствуют эксперименты по охрупчиванию материалов, насыщенных гелием путем имплантации а-частиц на циклотроне [4, 8, 14, 26] или по методу тритиевого трюка [99].  [c.111]

Одна из первых гипотез о механизме высокотемпературного радиационного охрупчивания принадлежит Барнсу [15]. Главная роль в ВТРО, по Барнсу, отводится гелию, образующемуся при облучении за счет (п, а-)-реакций. Гелий практически не растворим в металлах, и, как показывают эксперименты [35], плотность гелиевых пузырьков на границах зерен значительно выше, чем внутри зерна. Согласно проведенным оценкам [35], большая часть атомов гелия находится в пузырьках.  [c.111]


Смотреть страницы где упоминается термин Охрупчивание высокотемпературное : [c.114]    [c.116]    [c.10]    [c.16]    [c.96]    [c.97]    [c.97]    [c.98]    [c.101]    [c.103]    [c.110]    [c.111]    [c.214]   
Сварка Резка Контроль Справочник Том2 (2004) -- [ c.84 ]



ПОИСК



Высокотемпературная ТЦО

Высокотемпературное радиационное охрупчивание

Охрупчивание



© 2025 Mash-xxl.info Реклама на сайте