Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покрытие термопластичные

Нанесение покрытия в псевдоожиженном слое. Этот процесс применяют при нанесении покрытия термопластичными порошка-  [c.460]

Для получения покрытий с насыщенным цветом во всем мире наиболее широко используются алкидные материалы, так как они имеют низкую стоимость и не вызывают затруднений при производстве. Покрытия с металлическим оттенком обычно изготавливаются на основе термореактивных акрилатных связующих (или НВД), поскольку алкиды не обеспечивают необходимую долговечность таких покрытий. Термопластичные акрилатные лаки широко используются кампанией Дженерал Моторе как для покрытий с насыщенным цветом, так и с металлическим оттенком.  [c.291]


Большинство непревращаемых лакокрасочных покрытий термопластичны и при нагревании способны размягчаться в то время как превращаемые пленки обладают термореактивными свойствами.  [c.149]

Анализ экспериментальных данных показывает, что при воздействии воды и некоторых других сред на покрытия из термопластичных полимеров (фторопластов, поливинилхлорида) адгезионная прочность tr.i снижается до О или до определенного равновесного значения (рис. 33).  [c.56]

Парафиновое, битумное и другие покрытия из термопластичных материалов 2/4 1/3 0.5/1 —  [c.108]

Недостатком известных методов является трудность, а порой и невозможность определения содержания ингибитора в композиционном материале, включающем кроме ингибитора различного рода термопластичные покрытия на основе восков, парафинов, полиэтиленов, масел, битумов, а также в упаковочном материале, бывшем в эксплуатации и загрязненном маслами и консистентными  [c.137]

Величина Д7 в зависимости от того, какой является реакция — экзотермической или эндотермической, приобретает положительное или отрицательное значение, что проявляется в появлении специфических пиков, располагающихся выше или ниже базовой линии. Испарение, плавление и сублимация ингибитора, плавление термопластичных покрытий и т. д. приводят к появлению эндотермических пиков разложение целлюлозы, покрытий, ингибитора и других компонентов — к появлению экзотермических пиков.  [c.138]

Результаты экстрагирования органическими растворителями термопластичных или термореактивных смол из аппретирующих покрытий на стеклянных волокнах подтверждают существование химической связи между смолой и аппретом.  [c.138]

Одним из серьезных недостатков стеклонаполненных композиционных материалов является низкая герметичность. Этот недостаток ограничивает область применения изделий из этих материалов. Для обеспечения герметичности изделий, используемых для транспортировки или хранения жидких и газообразных продуктов, а также изделий, работающих при избыточном внутреннем и внешнем давлении, производится плакирование внутренней или внешней поверхности изделия термопластичными полимерами. Такая плакировка может осуществляться несколькими способами использование для герметизации трубы из термопласта, которая одновременно является оправкой при намотке труб из стеклопластика, нанесение полимерного покрытия в электростатическом поле и центробежным методом. Наиболее характерным дефектом такого типа изделий являются расслоения на границе плакирующего слоя и основного материала изделия. Кроме того, в процессе эксплуатации таких изделий (нагревание, охлаждение, деформации), вследствие различия коэффициентов температурного расширения, а также упругих характеристик, могут возникать дополнительные расслоения и трещины в пограничной области.  [c.16]


Битумы хорошо растворимы в растительных маслах и в ряде органических растворителей. К важнейшим положительным свойствам природных и искусственных битумов относятся высокая температура размягчения, стойкость к воздействию климатических факторов, воды и химических реагентов. Основными недостатками их являются термопластичность, приводящая к размягчению покрытий, и черный цвет, не позволяющий получать покрытия светлых тонов.  [c.55]

Пленка поливинилхлоридная пластифицированная техническая ГОСТ 16272—79 представляет собой термопластичный материал, изготовленный на основе поливинилхлорида с добавками. Пленку мол<но сваривать и склеивать. Она бывает марок В — упаковочная, для консервации машин, механизмов и других изделий М-40 — морозостойкая, для изготовления сигнальных флажков Э — эластичная, для покрытия валиков вытяжных аппаратов прядильных машин, С — светостойкая прозрачная, для сельского хозяйства.  [c.27]

Покрытие получают распылением расплавленного металла на подложку. При этом металл распыляется в жидкой фазе в виде капель, осаждающихся на покрываемую поверхность. Метод очень прост, позволяет получать слои любой толщины и с прекрасным сцеплением с основным металлом. Важное преимущество данного способа — возможность защиты сборных конструкций. Однако расход металла при этот способе значительный, а покрытие получается пористым и для обеспечения противокоррозионной защиты его требуется дополнительно уплотнять. Для этих целей используют термопластичные смолы и другие полимерные материалы. В некоторых случаях пористая структура считается весьма ценной, так как она служит хорощим носителем смазочных материалов, поэтому этот метод широко применяют при восстановлении изношенных деталей машин.  [c.138]

Пленки пластмассы чаще наносят на поверхности деталей машин вихревым или газопламенным напылением или облицовкой листовыми материалами. Для покрытия деталей газопламенными и вихревыми методами пригодны только термопластичные материалы в виде мелкодисперсного порошка, который при нагреве переходит в вязкотекучее состояние без существенного разложения, а необходимые физико-механические и химические свойства приобретает после охлаждения.  [c.341]

Термоокислительная стабильность масел 301 Термопарные сплавы 43 Термопластичные пластмассы 151 Термостойкие лакокрасочные материалы 227 Термопреновый клей 247 Термореактивные пластмассы 151 Термостойкие шпатлевки 207 Термостойкие покрытия 227 Термостойкость бумаги 293 Термостойкость покрытий 191 Термочувствительные краски и карандаши 228  [c.346]

В тех условиях теплового нагружения, в которых обычно используют термопластичные теплозащитные покрытия, скорость их поверхностного разрушения редко снижается менее 1 мм/с. Отсюда следует, что режим такого разрушения весьма близок к квазистационарному.  [c.151]

Сварные соединения армированных пленок могут быть выполнены контактной термоимпульсной сваркой (КТИ), а также высокочастотной прессовой сваркой в случае армированных пленок и других комбинированных пленочных материалов с двусторонним и односторонним нанесением термопластичного покрытия, хорошо свариваемого этим методо.м поливинилхлорида, термопластичного полиуретана, некоторых плавких фторопластов (Ф-2М, Ф-32Л, Ф-26, Ф-42, Ф-4НА) и др.  [c.128]

Вакуумная формовка (рис. 12.12) также относится к разряду прогрессивных технологических процессов. Изготовление форм основано на формообразовании и придании им необходимой прочности за счет разности давлений с внешней стороны формы и внутри, между частицами песка. Модель 3 вентами соединяется с вакуумируемой полостью внутри модельной плиты 4, что облегчает ее покрытие пленкой 2, подогреваемой нагревателем 1 до термопластичного состояния. На покрытую пленкой модель 5 устанавливают опоку 7, также оборудованную вакуумируемой камерой, которая связана вентами с внутренней полостью опоки, после чего в нее засыпают просеянный песок 6. Не снимая вакуума, опоку закрывают пленкой и после снятия вакуума в полости модельной плиты извлекают модель. Таким же образом изготовляют полуформу низа, после чего в нее, если Это необходимо, устанавливают стержень и собирают форму. Не снимая вакуума, форму заливают расплавленным металлом и подают на выбивку, которая сводится к снятию вакуума, в результате чего отливки вместе с песком выпадают из опок. Остатки пленки механически удаляют с лада опок, и цикл формовки повторяется снова. Песок используется многократно.  [c.220]


Для материалов на основе гидрофобных термопластичных полимеров характерны низкая растворимость и непроницаемость для нелетучих электролитов. Однако это свойство может теряться при попадании в раствор следов органических растворителей. Для летучих электролитов время пробоя таких покрытий весьма незначительно.  [c.241]

Наириты растворяются в органических растворителях и дают маловязкие и концентрированные растворы, которые легко можно наносить на защищаемую поверхность. Невулканизированные покрытия из наирита являются термопластичными. Они размягчаются при температуре выше 40°С. Если их выдержать несколько дней в растворе серной кислоты или хлористого натрия при 60-70° С, то покрытие вулканизируется и приобретает свойства резины. Такие покрытия отличаются хорошим сопротивлением старению, могут работать в кислотах, щелочах и растворах солей до 70 °С. Выдерживают кратковременный нагрев до 90-95 °С.  [c.252]

Гуммировочный состав пригоден как для получения вулканизированных, так и невулканнзированных, т. е. отвержденных при комнатной температуре, покрытий. Вулканизированное покрытие обладает всеми свойствами, характерными для резины высокой эластичностью,, хорошим сопротивлением истиранию, стойкостью ЭК знакопеременным деформациям и температурным колебаниям и пр. Вулканизированное покрытие применяется при, температурах до 70°С. В контакте с водой и растворами нейтральных солей допускается кратковременный перегрев до 902 -гНевулканизированное покрытие термопластично его можно применять при температуре не выше-50 °С. После длительной эксплуатации при 50 °С оно может самопроизвольно свулканизироваться, т. е. приобрести эластичность и другие характерные свойства резины..  [c.130]

Невулканизованные покрытия термопластичны и лишены резиноподобных свойств, поэтому их не рекомендуется применять при температурах, превышающих 50 °С,и в условиях газо- и гидроабразивного изнашивания [47, с. 22].  [c.55]

Покрытия термопластичными материалами. Способ заключается и том, что тонкоизмельченный порошкообразный термопластичный материал захватывается сильной струей сжатого воздуха и из аппа-()ата специальной конструкции, так называемой установки для газопламенного напыления, выбрасывается на металлическую или другую поверхность. При выходе из установки порошок проходит через п.ламя газовой горелки, мелкодисперсные частицы пластмассы раз мягчаются и, попадая на поверхность металла, предварительно нагретого пламенем горелки, плотно сцепляются с нею, образуя сплош кое покрытие. Термопластичные материалы обладают повышенной стойкостью в кислых и щелочных средах.  [c.148]

Невулканизованные покрытия из иаирита НТ являются термопластичными и выше 40° С начинают размягчаться. Однако ССЛ1 их выдержать несколько дней в контакте с горячими жидкими средами, например в растворе серной кислоты или поваренной соли, нагретом до 60—70° С, то покрытия постепенно вул-кани. уются и приобретают все ценные свойства резины.  [c.445]

В качестве базового материала для создания защитных покрытий мы выбрали полиэтилен. Полиэтилен — полимеризационная термопластичная пластическая масса. Являясь насыщенным углеводородом, он высокоинертен во многих агрессивных средах.  [c.65]

Целлюлозные лаки — растворм эфиров целлюлозы пленки их термопластичны. Большая часть целлюлозных лаков — лаки холодной сушки. Особое значение из них имеют нитроцеллюлозные лаки (нитролаки). Пленки нитролаков механически прочны, отличаются блеском, хорошо сопротивляются действию воздуха, влаги, масел и пр. Нитролаки плохо пристают к металлам, поэтому перед нанесением нитролака на металл обычно предварительно создают слой грунтового лака, хорошо пристающего к металлу, но менее стойкого к действию воздуха, света и влаги (например, глифталевого), а затем уже наносят слой нитролака в рассматриваемом случае первое покрытие требует горячей сушки, которую нитролак не выдержал бы, поэту сушку для запекания грунта производят еще до нанесения нитролака. Нитролаки применяют также для пропитки хлопчатобумажных оплеток автомобильных и самолетных проводов (поверх слоя резиновой изатяцип) с целью защиты резины от влияния озона, масла и бензина.  [c.130]

Парафиновое, битумированное и другие покрытия из термопластичных материалов 4—5 3—4 2—3 2  [c.120]

Использование таких систем позволяет упростить анализ антикоррозионных бумаг, автоматизировать метод определения. Достоинство метода заключается в одновременном комплексном определении содержания всех компонентов упаковочного материала воды, ингибитора, термопластичного покрытия и т. д. Метод основан на тепловой нагрузке испытуемого образца бумаги, осуществляемой в режиме увеличения температуры окружающей среды по определенной программе. Изменения, происходящие при этом с образцом, фиксируются системами прибора, которые определяют изменение величины энтальпии (ДТА) как разницы температур (ЛГ) справочного (инертного) образца, например стекловолокно, AljO , и испытуемого образца упаковочного материала.  [c.138]

Как уже отмечалось выше, определение содержания в антикоррозионной бумаге термопластичных гидрофобизирующих и барьерных покрытий представляет собой трудную задачу в связи с отсутствием надежных методик, дающих воспроизводимые результаты.  [c.141]

В этих случаях наиболее целесообразно использование дериватографического метода определения содержания в бумаге термопластичных покрытий по их эндотермическим пикам плавления, предварительно откалиброванных по образцам комбинированного упаковочного материала с известным содержанием термопластичных покрытий. Так, на рис. 29, а представлены кривые ДТА, полученные для образцов бумаги с различным содержанием полиэтилена (1—100% полиэтилена, 2—36%, 3—23%). Данные получены при следующих условиях дериватографирования навеска испытуемого образца бумаги — 250 мг, чувствительность весов — 500, ДТА — 1/1, ДТГ — 1/10, скорость роста температуры — 3° С/мин.  [c.142]

Аналогичным образом определяется содержание легкоплавких термопластичных покрытий (таких как парафин) в антикоррозионной бумаге, температура плавления которых находится в диапазоне температур 48—75° С. Содержание ингибитора и воды в бумаге в этом случае определяется по интегральной кривой потери массы образца. Универсальность дериватографического метода определения различных компонентов антикоррозионных бумаг делает его пригодным для контроля качества бумаги на всех стадиях ее производства и использования у потребителя.  [c.143]


В основе всех материалов, предназначенных для получения полимерных покрытий, лежат пленкообразующие вещества, которые, собственно, и делают материал способным давать пленку на твердой подложке. В качестве пленкообразующих используются в основном синтетические смолы — эпоксидные, полиэфирные, алкидные, фенолформалъдегидные, кремнийоргаииче-ские и лр, а также ряд природных материалов — высыхающие масла, нитроцеллюлоза, битумы и т. д. В большинстве случаев пленкообразующие вещества представляют собой олигомеры, которые содержат реакционноспособные группы и при отверждении превращаются в высокомолекулярные соединения (термореактивные пленкообразующие). Но часто в качестве пленкообразующих используют растворы высокомолекулярных соединений, отверждение которых состоит в простом удалении растворителя- (термопластичные пленко-образующие).  [c.73]

Полимерные покрытия наносятся, как правило, в несколько слоев с обязательной сушкой каждого из них. Общая толщина покрытия составляет обычно 50—100 мкм, редко 200—300 мкм. Наносят их методом распыления, оку-НЯД1ИЯ, полива, с помощью кисти, валков и т. д. Сушку быстросохнущих термопластичных покрытий производят обычно на воздухе при нормальной температуре (холодная сушка). Отверждение же покрытий на основе термореактивных пленкообразующих проводят, как правило, при повышенных температурах в сушильных камерах или путем радиационного нагрева с применением инфракрасного излучения, хотя существуют термореактивные пленкообразующие, которые отверждаются на холоде.  [c.73]

Различают полимерные покрытия на основе термопластичных (термопласты) и термореак тивных (реактопласты) полимеров [6, 25, 26, 40] Термопластичные полимеры при нагревании раз мягчаются и вновь затвердевают при охлажде НИИ, сохраняя свои первоначальные свойства Термореактивные полимеры при нагревании не обратимо изменяют свои свойства и переходят в неплавкое и нерастворимое состояние.  [c.120]

Сами по себе диановые смолы при нанесении на поверхность образуют термопластичные мягкие непрочные покрытия. Для придания эпоксидным смолам пространственной (сетчатой) структуры их необходимо отверждать. В качестве отвердителей применяют амины и их аддукты с эпоксидной смолой, полиамиды, многоосновные кислоты и их ангидриды, изоцианаты, низкомолекулярные фенолы- и аминоформальдегидные смолы.  [c.50]

Для защиты химического оборудования применяют два типа полимерных покрытий — пленочные и листовые. Эти покрытия могут быть получены на основе эластомеров, термореактивных и термопластичных полимеров. Листовые покрытия часто послойно сочетают в конструкции защиты слои различных термопластов, приклеенных с помощью термореактивных или эластомерных клеев. Используют также неадгезированные листовые покрытия при плакировании труб и в качестве вкладышей для защиты аппаратов. Для каждого типа покрытия необходимо устанавливать свое предельное состояние с учетом эксплуатационных свойств.  [c.44]

Монолитные покрытия из горячих пластбетонных смесей на термопластичном связующем (пластифицированные инден-кумароновые и нефтеполимерные смолы, смолы из отходов лавсанового производства) укладывают по основаниям с прочностью 10 МПа, на которые предварительно приклеен химически стойкий гидроизоляционный материал. Укладку горячих смесей ведут с помощью малогабаритных асфальтоукладчиков и уплотняют пневмокатками.  [c.215]

В табл. 6.3 приведены в качестве примера механические свойства композитов, армированных высокопрочными волокнами (углеродным волокном и борволокном) [6.16]. Из приведенных данных видно, что у этих материалов ударные вязкости оказываются сравнительно низкими. На рис. 6.24 показано изменение ударной вязкости в зависимости от содержания стекловолокна в различных композитах, составленных на основе термопластичных пластмасс [6.17]. Пример металлического композита приведен на рис. 6.25. Это алюминий, армированный борволокном, покрытым карбидом кремния [6.18]. Для него можно найти, как влияет на ударную вязкость направление волокна в зависимости от направления удара.  [c.167]

Анализируя приведенные в справочнике графики, разработчики материалов могут определить, какие свойства материалов (коэффициенты трения, теплопроводности, температурного линейного расширения и т. д.) целесообразно улучшить для использования в том или ином узле. В справочнике обосновываются целесообразность производства ленточных материалов, содержащих тонкий рабочий слой из антифрикционных термопластичных материалов. а также решения технологических задач по обеспечению надежности эксплуатации тонкослойных полимерных покрытий. Во всех случаях применения полимерных подшипников скольжения конструкторам и технологам необходимо совместно решать вопросы по выбору оптимальной толщины полимерного слоя подшипника. Другими радикальными путями значительного увеличения нагрузочной способности термопластичных подшипников скольжения являются создание и применение полимерного материала с теплопроводностью около 1 Вт/(м - С) и коэффициентом трения не более, чем у ацетальных смол (группа 14. см. табл. 1.1) или наполненных ацетальных смол с малым коэффициентом трения (группы 16, 15). Эти рекомендации логически вытекают из приведенных графических результатов расчетов.  [c.8]

Литейные [краны подъемные В 66 С 17/06-17/18 машины стереотипные В 41 D 3/12 стержни В 22 С 9/00-9/30 установки (В 22 D 47/00 для обработки пластических материалов В 29 С 39/00, 45/00) формы <В 22 (С 9/00-9/30 комбинированные с формовочными установками D 47/02 материалы для них С 1/00-1/26 покрытие С 23/02) для отливки стереотипов В 41 D 3/00-3/28) ци.шндры для литья под давлением термопластичных материалов В 29 С 45/62 шлаки, технология разделения В 03 В 9/04] Литейный чугун (получение С 1/08 термообработка D 5/00-5/16) С 21 Литники В 22 входные о-гзерстия для подвода расплавленного металла С 9/08 обрезка D 31/00) Литниковые ножи, очистка В 41 В 11/72 Литье В 22 <в вакууме D 18/00-18/08 по выплавляемым моделям С 1/08 под давлением (D 17/00-17/32, 18/00-18/04, 18/08 обработка расплава D 27/09-27/13) в землю, формовка постелей D 3/02 в изложницы С 13/08 металлов (кокильное D 15/04 легкоокисляющееся С 1/06 многослойное D 7/02 н< прерывное D 11/00-11/22 особые способы D 23/00-23/06, F 9/08 художественное D 25/02-25/04 центробежное D 13/00-13/12 труб С13/10)>  [c.106]

Теплоизоляция (лабораторных сосудов В OIL 11/02 роторных компрессоров F 04 С 29/04 самолетов и т. п. В 64 С 1/40 сосудов F 17 С (высокого давления (баллонов) 1/12 низкого давления 3/02-3/10) В 65 D (тара с теплоизоляцией в упаковках) 81/38 труб F 16 L 59/(00-16) центрифуг В 04 В 15/02) Теплолокаторы G 01 S 17/00 Теплоносители, использование в инструментах и машинах для обработки льда F 25 С 5/10 Теплообменники [устройства для регулирования теплопередачи F 13/(00-18), 27/(00-02) паровые на судах В 63 Н 21/10 из пластических материалов В 29 L 31 18 F 27 (подовых печей В 3/26 регенеративные D 17/(00-04) шахтных печей В 1/22) систем охлаждения, размещение на двигателях F 01 Р 3/18] Теплопроводность (использование для сушки материалов F 26 В 3/18-3/26 исследование или анализ материала путем G 01 N (измерения их теплопроводности 25/(20-48) определения коэффициента теплопроводности 25/18)) Термитная сварка В 23 К 23/00 Термодис узия, использование для разделения В 01 D (жидкостей 17/09 изотопов 59/16) Термолюминесцентные источники света F 21 К 2/04 Термометры контактные G 05 D 23/00 Термообработка <С 21 D (железа, чугуна и стали листового металла 9/46-9/48 литейного чугуна 5/00-5/16 общие способы и устройства 1/00-1/84) покрытий С 23 С 2/28 цветных металлов с целью изменения их физической структуры С 22 F 1/00-1/18) Термопары (Н 01 L 35/(28-32) использование <(в радиационной пирометрии J 5/12-5/18 в термометрах К 7/02-7/14) G 01 для регулирования температуры G 05 D 23/22)] Термопластичные материалы [В 29 С (способы и устройства для экст-  [c.188]


Оболочковые формы изготавливают из формовочных песчано-смоля1Шх смесей с термопластичными или термореактивными связующими смолами. Если смола в смеси находится в порошкообразном состоянии, то такую формовочную смесь называют нетакированной, а если зерна песка покрыты сплошной тонкой пленкой смолы, то смесь будет плакированной. Формовочная смесь содержит наполнитель — мелкозернистый кварцевый песок — 100% связующее — пульвербакелит (фенолформальдегидная смола с добавками уротропина) — 6—7% увлажнитель (керосин, глицерин) — 0,2—0,5% растворитель (ацетон, этиловый спирт) — до 1,5 /о.  [c.325]

Фторопласты — производные этилена, в которых все атомы водорода заменены галогенами. Они имеют наибольшую термическую и химическую стойкость из всех термопластичных полимеров. Фторопласт-4 (- Fj- F -) , называемый также тетрафторэтилен (тефлон), имеет высокую плотность (2,2 г/см ), водостоек, не горит, не растворяется в обычных растворителях, обладает электроизоляционными и антифрикционными свойствами. По химической стойкости превосходит все известные материалы. Выдерживает температуру от -269 до +260 °С. Недостаток — трудность переработки в изделия. Применяется для изгртовления изделий, работающих в агрессивных средах, при высокой температуре, для антифрикционных покрытий на металлах, прокладок, электроизоляции и др. Фторопласт — 3 (- F - F l-) по свойствам и применению аналогичен фторопласту-4, уступая ему по электроизоляционным свойствам, термической и химической стойкости и превосходя по прочности и твердости. Он более пластичен и поэтому легче перерабатывается в изделия.  [c.239]

Метод формования жестких термопластов заключается в том, что листовой материал нагревается до размягчения (рис. 13.11) затем формуется под вакуумом или давлением или подвергается вакуумному формованию с предварительной механической вытяжкой в соответствующей форме, после чего охлаждается и затвердевает. Полученные листы заданной конфигурации помещают затем в зажимные приспособления, напыляют на них рубленое волокно и смолу и уплотняют обратную сторону этих листов. Для этих целей применяют специальную композицию смолы, которая обладает адгезией к полиакрилатному листу, благодаря чему после отверждения лист и армированная волокном смола образуют единый материал. Таким образом формируется прочный слоистый пластик, в котором термопластичный лист, или кожица , образует поверхность детали и выполняет роль наружного слоя и (или) лакокрасочного покрытия.  [c.76]

По крайней мере на одну сторону нзделяя можно нанести наружный смоляной слой нлн термопластичное покрытие (термоформованием).  [c.195]


Смотреть страницы где упоминается термин Покрытие термопластичные : [c.134]    [c.106]    [c.118]    [c.138]    [c.257]    [c.176]   
Технология органических покрытий том1 (1959) -- [ c.398 ]



ПОИСК



Термопластичность



© 2025 Mash-xxl.info Реклама на сайте