Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Освещение прямое

На площадке, отведенной для открытого хранения передвижных паровых котлов, выделяется специальное место для хранения резиновых издел ий с устройством защиты последних от освещения прямыми солнечными лучами. Если передвижная котельная установка имеет кузов или специальные укладочные ящики, то резиновые изделия, как и все другие принадлежности и запасные части, не снимаются, а хранятся комплектно на своих местах (желательно в расправленном виде).  [c.306]


ОСВЕЩЕНИЕ ПРЯМОЕ И ДИФФУЗНОЕ  [c.117]

Формула (V.13) выражает закон квадратов расстояний, согласно которому освещенность прямо пропорциональна силе света и обратно пропорциональна квадрату расстояния между источником облучения и облучаемой поверхностью.  [c.246]

Метод закона косинусов. Из выражения (У.13) следует, что освещенность прямо пропорциональна косинусу угла между направлением светового потока и нормалью к освещаемой поверхности. Следовательно, при постоянных I г освещенность поверхности можно менять, изменяя угол падения лучей. Этот метод не следует применять, если приемниками излучения служат фотоэлементы с внешним фотоэффектом или селеновые фотоэлементы, так как освещение в этом случае происходит под переменным углом, что нежелательно.  [c.271]

Отраженным светом называют свет, который отражается от смежных поверхностей объекта и других окружающих его предметов, освещенных прямым светом. Отраженный свет вызывает появление рефлексов, более светлых участков, которые способствуют выявлению формы объекта в тени. Поэтому падающие тени всегда темнее собственных.  [c.183]

Метод закона косинусов. Из выражения ( .13) следует, что освещенность прямо пропорциональна косинусу угла между падающим пучком света и нормалью к освещаемой поверхности. Следовательно, при постоянных /иг освещенность поверхности 250  [c.250]

Учитывая, что при равенстве освещаемых площадей освещенность прямо пропорциональна падающему на поверхность световому потоку, получаем  [c.136]

Освещение прямое 194, XV. Освещение рудничное 224, XV. Освещение створное (маяк) 744,  [c.489]

Действительно, глаз идеально приспособлен к солнечному свету, к восприятию изображений предметов, освещенных прямым или рассеянным светом Солнца.  [c.4]

В случае необходимости проверить освещенность в дайной точке на горизонтальных или наклонных поверхностях (пюпитр, дикторский стол и т. д.)" применяют. точечный метод расчета. Для расчета освещенности прямым лучом от источника на горизонтальной поверхности по этому методу служит выражение  [c.310]

Рис. 1.1. Спектральная освещенность прямой солнечной радиацией до и после ее прохождения через атмосферу [2]. Рис. 1.1. <a href="/info/452537">Спектральная освещенность</a> прямой <a href="/info/127048">солнечной радиацией</a> до и после ее прохождения через атмосферу [2].

Предметы при неизменном направлении проецирования имеют одну и ту же параллельную проекцию на все плоскости данного направления. В зависимости от направления проецирования по отношению к плоскости проекций параллельное проецирование разделяют на косоугольное и прямоугольное (ортогональное). Параллельное проецирование называют косоугольным, если направление проецирования составляет произвольный угол с плоскостью проекций. Примером косоугольного проецирования может служить тень, падающая от предмета, освещенного лучами Солнца. Здесь вследствие значительного удаления Солнца от Земли можно допустить, что его лучи параллельны. Параллельное проецирование называют прямоугольным, или ортогональным, если направление проецирования совпадает с направлением плоскости проекций, т. е. составляет с плоскостью проекций прямой угол. Примерами ортогональных проекций могут быть различные технические чертежи, изображения зданий в плане и фасадах и пр.  [c.12]

Освещение предмета называют ф а к е л ь-п ы м, если источник света удален от объекта на незначительное расстояние. Лучи света при этом образуют связку прямых.  [c.199]

Как следует из формулы (1.18), освещенность поверхности обратно пропорциональна квадрату расстояния от точечного источника, прямо пропорциональна силе света и косинусу угла падения ф. Освещенность является фотометрической величиной, относящейся только к освещаемой поверхности.  [c.14]

Вентильный фотоэффект. Вентильный фотоэффект — это явление возникновения э. д. с. при освещении контакта двух разных полупроводников или полупроводника металла в отсутствие внешнего электрического поля. На этом явлении основаны вентильные фотоэлементы, обладающие тем преимуществом перед фотосопротивлениями и внешними фотоэлементами, что они могут служить индикаторами лучевой энергии, не требующими внешнего питания. Но главная особенность вентильных фотоэлементов состоит в том, что они открывают путь для прямого превращения солнечной энергии в электрическую. В начале нашего века существовали фотоэлементы, работающие на контактах полупроводников и металлов. Однако в дальнейшем было показано, что наиболее эффективными являются фотоэлементы, основанные на использовании контакта двух полупроводников с р- и -типами проводимости, т. е. на так называемом р- -переходе. При освещении перехода в р-области образуются электронно-дырочные пары. Электроны и дырки диффундируют к р- -переходу. Электроны под действием контактного поля будут переходить в -область. Дырки же преодолевать барьер не могут и остаются в р-области. В результате р-область заряжается положительно, -область — отрицательно и в р-я-переходе возникает дополнительная разность потенциалов. Ее и называют фотоэлектродвижущей силой (фото-э. д. с.).  [c.346]

Опытным доказательством этого закона могут служить наблюдения над резкими тенями, даваемыми точечными источниками света, или получение изображений при помощи малых отверстий. Соотношение между контуром предмета и его тенью при освещении точечным источником (т. е. источником, размеры которого очень малы по сравнению с расстоянием до предмета) соответствует геометрическому проектированию при помощи прямых линий (рис. 1.1). Аналогично рис. 1.2 иллюстрирует получение изображения при помощи малого отверстия, причем форма и размер изображения показывают, что проектирование происходит при помощи прямолинейных лучей.  [c.13]

Полученное выражение показывает, что освещенность, создаваемая точечным источником ), обратно пропорциональна квадрату расстояния от источника до поверхности и прямо пропорциональна косинусу угла, составляемого направлением светового потока (осью узкого конуса, внутри которого распространяется поток) с нормалью к освещаемой поверхности. Это есть основной закон освещенности, создаваемой точечным источником (закон обратных квадратов).  [c.46]

Если освещение происходит прямым светом от Солнца, угловые размеры которого 0 = 30 = 0,9-10 рад, то размеры области когерентности составят 1,1 10 Я = 0,06 мм (для Я = 0,55-10 мм). В отношении опыта Юнга (при использовании Солнца в качестве источника света) из приведенного расчета следует, что щели Si, S2 (см. рис. 4.10) следует располагать на расстоянии, меньшем 0,06 мм, а для наблюдения отчетливых интерференционных полос с видимостью, например 0,90, нужно брать 2/ = 0,015 мм.  [c.107]


Если освещение объекта наблюдения происходит не за счет прямого солнечного света, а за счет света, рассеянного на окружающих предметах или на облаках, то отдельные точки этих предметов можно считать источниками некогерентных волн (так как область когерентности для них имеет размеры 0,06 мм) и использовать модель некогерентного протяженного источника и в данном случае. При всестороннем освещении объекта следует считать 6 I 1, и для размеров области когерентности имеем 2/ког лг Я.  [c.107]

Разрешающая способность глаза человека при наблюдении на расстоянии 250 мм (так называемое расстояние наилучшего зрения) составляет приблизительно 0,1 мм. Два маленьких предмета, находящиеся на таком расстоянии и освещаемые даже прямым солнечным светом, можно считать практически некогерентными источниками. Тем более это относится к всестороннему освещению. Таким образом, при наблюдении невооруженным глазом в естественных условиях можно не принимать во внимание частичной когерентности волн, попадающих в глаз от различных точек предметов. Напротив, при наблюдении с помощью микроскопа, обладающего разрешением порядка длины волны, учет частичной когерентности освещения объекта, как правило, необходим.  [c.107]

В ультрамикроскопе осуществляется принцип темного поля, состоящий в том, что мы устраняем из поля зрения прямые лучи и наблюдаем лишь лучи дифрагировавшие. Этот принцип реализуется в целом ряде приспособлений. В частности, на нем основано применение специальных конденсоров (рис. 15.9), создающих такое освещение препарата на микроскопическом столике, при котором на него падает интенсивный пучок косо направленных лучей, непосредственно в объектив не попадающих. Центральные лучи задерживаются специальной непрозрачной ширмой, а боковые лучи  [c.362]

Если разность Д равна нулю, то и амплитуда (с) также равна нулю. Следовательно, если модели нет или модель не нагружена, то экран будет темным. Таким образом, мы получаем темное поле. Если ось анализатора повернута на 90° по отношению к то мы получаем освещенное поле, где место бывших темных полос занимают светлые полосы. Тот же эффект можно вызвать в плоскости полярископа, если поместить оси поляризатора и анализатора не под прямым углом, а параллельно друг другу.  [c.170]

Важной особенностью глаза является его способность работать в необычайно щироком диапазоне освещенностей. Прямые лучи Солнца создают на поверхности Земли освещенности порядка 100 000 лк, а в темноте глаз может отличить от темноты поверхность с освещенностью 10 лк. Работа в столь обширном диапазоне обеспечивается целым рядом различных механизмов. Почти мгновенно реагирует на резкое увеличение освещенности зрачок диафрагмируя входное отверстие глаза, он уменьшает количество света, попадающего на сетчатку. При слабом освещении зрачок вновь расширяется. У некоторых животных, в особенности у насекомых, изменение чувствительности глаза к свету происходит за счет миграции в сетчатке темного пигмента, экранирующего рецепторы. Кроме того, оказывается, что при слабом освещении в одном нервном волокне суммируются сигналы от многих рецепторов и число последних тем больше, чем слабее освещение, причем увеличение чувствительности достигается во вред разрешающей способности. Этим, по-видимому, объясняется тот общеизвестный факт, что при недостаточно ярком освещении глаз перестает различать мелкие детали. Затем, как уже говорилось, для работы при слабом освещении существует специальный палочковый аппарат.  [c.679]

Второе слагаемое в (7.16) имеет простой физический смысл. Если бы волна отражалась от грани, как от бесконечной плоскости, то пространство разделилось бы лучами ф = я — фо и ф = я4 Фо на три области — освещенную прямыми и отраженными лучами (/), освещенную только прямыми лучами (//) и тень (///). Таким образом, полное поле в задаче о дифракции на клине представлено не в виде суммы падающей волны ы и дифракционного поля, как это было в случае ограниченных тел, цилиндра и шара, а распадается на геометрооптическое поле и негеометрооптическую его часть. В ситуации, изображенной на рис. 7.1, геометрооптическая часть поля в области 1 (между верхней гранью клина ф = О и лучом ф = я— фо, т. е. границей, разделяющей пространство, содержащее отраженную волну, от пространства без этой волны) состоит из падающей и отраженной плоских волн, в области II (между лучом ф = = я — фо и лучом ф = я + фо, т. е. границей между светом и тенью)—из одной падающей волны, а в области III геометрооптическая часть поля вообще отсутствует (тень).  [c.78]

Наиболее характерной светооптической схемой, реализующей такой принцип формирования светораспределения, является схема с использованием в качестве отражателя эллипсоидной поверхности (рис. 6.32). Тело накала источника света устанавливается в переднем- фокусе эллипсоида Р], тогда после отражения излучение будет концентрироваться в зоне второго фокуса отражателя на относительно малой площадке, где устанавливается экран с формой границы, симметричной соответствующей создаваемой конфигурации светотеневых границ заданного режима освещения (прямой для противотуманного, ломаной для ближнего света). Затем распределение световой энергии, созданной в плоскости экрана, проецируется в виде соответствующего изображения на дорожное полотно конденсорной линзой, фокальная точка з которой совпадает со вторым фокусом эллипсоидного отражателя.  [c.184]

Характер освещения Прямой свет Преобладающий прямой свет Полукосвенный свет Косвенный свет Косвенный (закрытый)  [c.222]

На панели пульта управления станка размещены два двухполюсных переключателя для управления прямым и обратным ходом каретки и реверсом шпинделя, регулятор оборотов ишин-деля и скорости каретки включения освещения дозатора, светосигнальное устройство, сигнализирующее о наличии напряжение в цепи управления.  [c.292]

От вершин отмеченных трехгранных углов студенты проводят горизонтальные прямые, контрастно разделяющие освещенные и теневые части. Допускается одновременно легкая тональная подштриховка линий в глубь изображаемой плоскости.  [c.116]

Измерение отношений методом вращающихся секторных дисков подробно описано Куинном и Фордом [71]. Сами диски сделаны с отверстиями вблизи периферии, образованными радиальными парами ножевых кромок. Ось вращения дисков расположена параллельно пучку излучения, который проходит через отверстия и может прерываться. Средняя яркость источника, наблюдаемая через отверстия вращающегося секторного диска, выражается в соответствии с законом Тальбота произведением яркости источника на коэффициент пропускания диска, т. е. на долю времени, в течение которого излучение может проходить через отверстия. Эта доля равна отношению полного угла, занимаемого центрами всех отверстий, к 2я. Тщательно сделанный диск, имеющий, например, коэффициент пропускания 1,25 /о. позволяет получить погрешность измерения коэффициента пропускания до 0,01 %. Коэффициент пропускания может быть измерен либо механически — прямым измерением положения кромок ножей, либо хронометрированием светового пучка, проходящего через отверстие, когда диск вращается in situ. Для того чтобы выполнялся закон Тальбота и была полностью реализована указанная возможная точность в измерении отношения, жалюзийный фотоумножитель (например, EMI 9558) нуждается в низком уровне освещения катода. Средний анодный ток не должен превышать примерно 0,1 мкА, а потенциалы динодов должны быть стабильными.  [c.373]


Во многих случаях достаточно знать среднюю сферическую силу света, т. е. значение полного потока, посылаемого источником, а не его распределение по различным направлениям. Такое измерение может быть произведено в так называемых интегральных фотометрах. Одним из таких фотометров служит шаровой фотометр Ульбрехта. Исследуемый источник подвешивается внутри полого шара К (рис. 3.14), внутренняя поверхность которого покрыта белой матовой краской. Белый матовый экран 5 защищает отверстие О на поверхности шара от действия прямых лучей источника. Если отражение света от внутренней поверхности шара К следует закону Ламберта, то освещенность Е отверстия О пропорциональна полному световому потоку Ф лампы  [c.60]

Чтобы быть уверенным в том, что сужение находится при тон же температуре, что и соль, полый цилиндр окружал J полностью и был приклеен к нему при помощи пластика, твердеющего при охлаждении. Гелий мог конденсироваться в /, поступая по тонкому капилляру L. Другой блок соли (не показанный на фиг. 102) был прикреплен к L и служил тепловым экраном. В серебряном слое покрытия криостатов и вакуумной рубашки были оставлены узкие щели, так что уровень гелия М можно было наблюдать, пользуясь небольшой ртутной лампой с фн.льтрамп, пропускающими только зеленый свет. Если свет не падал прямо на щель и если освещение включалось только в моменты наблюдения уровня (на несколько секунд), то полное время отогрева достигало получаса.  [c.572]

Прямое отношение к сказанному имеет вопрос о влиянии скорости и температуры деформации на характер аксиальных текстур. Этот вопрос мало освещен в литературе. В общем случае повышение скорости и температуры деформации усиливает неоднородность и многоком-понентность текстур. Однако анализ закономерностей и причин этого затрудняется наложением процессов рекристаллизации, которые успевают в той или иной мере совершиться в ходе самой деформации.и последующего охлаждения.  [c.284]


Смотреть страницы где упоминается термин Освещение прямое : [c.175]    [c.181]    [c.86]    [c.355]    [c.185]    [c.61]    [c.257]    [c.10]    [c.30]    [c.49]    [c.208]    [c.82]    [c.74]    [c.162]    [c.217]    [c.222]    [c.564]   
Техническая энциклопедия Том15 (1931) -- [ c.194 ]



ПОИСК



Конденсор прямого и косого освещения ОИ

Освещение прямое и диффузное

Передатчики прямого освещения

Передатчики прямого освещения объекта 724, XVI



© 2025 Mash-xxl.info Реклама на сайте