Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания - Возбудители при испытаниях

Колебания - Возбудители при испытаниях 300  [c.617]

Для резонансного силовозбуждения используют инерционный силовозбудитель. Частота вынужденных колебаний машин с таким силовозбуждением яа рабочих режимах близка к частоте собственных колебаний их упругой системы. Это позволяет при малых нагрузках, развиваемых возбудителем, осуществлять испытания на усталость крупных деталей или образцов, требующих для разрушения значительных усилий.  [c.194]

Во время работы гидравлического привода возникают периодические колебания давления, возбудителями которых в основном являются насосы. Величина отношения заброса (повышения) давления к рабочему давлению составляет для шестеренных и некоторых поршневых насосов примерно 35% [25]. Эта величина достигает более высоких значений, если два или несколько насосов работают на одну магистраль, так как в этом случае амплитуды забросов давления могут складываться. Так, испытания, проведенные на одной из гидравлических систем, показали, что при двух параллельно работающих насосах с приводом от одного двигателя относительная пульсация давления в системе возрастает почти в 3,5 раза по сравнению с одним насосом [25]. Следует только иметь в виду, что амплитуды забросов нескольких параллельно работаюш,их насосов не всегда складываются.  [c.26]


Установки для двухчастотных испытаний основаны на сложении двух силовых воздействий от различных независимых или связанных между собой силовых возбудителей, которые могут иметь кривошипные механизмы, инерционные возбудители, механические редукторы или гидравлические пульсаторы. Для воспроизведения би-гармонических нагрузок используют специальные машины, а также обычные, но дополненные вторым силовозбудителем. Для получения постоянного значения пульсаций давления при переменной частоте колебаний создан гидромеханический пульсаторе .  [c.181]

В образцах в зависимости от их форм и размеров, типа возбудителя и приемника, способа крепления и схемы приложения динамической нагрузки можно возбуждать продольные, изгибные, крутильные и более сложные виды колебаний. Данный метод можно использовать также при вибрационных испытаниях крупногабаритных изделий, однако при этом существенно изменяется методика испытаний, способы приложения нагрузок, а также способы возбуждения и регистрации колебаний. Метод используется также при оценке интегральной жесткости крупногабаритных конструкций [11, 22] и не может быть использован при локальном определении физико-механических характеристик в изделии. Для практического применения этого метода необходимо знать геометрические размеры изделия и плотность материала, обеспечить условия закрепления изделия на опорах и преобразователей на изделии, а также нормальные температурно-влажностные условия окружающей среды.  [c.87]

В машинах с электромагнитным силовозбуждением колебания нагружаемой системы вызываются периодическими электро- магнитными силами притяжения, величина которых зависит от силы тока, проходящего через катушку электромагнита возбудителя. Следовательно, для программирования задаваемых образцу нагрузок достаточно соответствующим образом программировать напряжение переменного тока, питающего возбудитель. Практически осуществить это нетрудно. Поскольку продолжительность изменения силы тока может быть небольшой, время переключения режима испытаний зависит главным образом от добротности колебательной системы и величины колеблющихся масс (некоторые экспериментальные данные по этому вопросу приведены в гл. VII). При составлении испытательной программы в машинах с электромагнитным силовозбуждением необходимо иметь в виду, что сила магнитного взаимодействия (в случае системы с одним электромагнитом) меняется нелинейно с изменением зазора между полюсами электромагнита и якорем, поэтому программа изменения силы питающего тока не вполне соответствует программе изменения напряженности образца.  [c.63]


Система управления машиной в связи с переходом от электровакуумных ламп к полупроводниковым приборам претерпела большие изменения. Механизм статического нагружения оснащен тиристорным приводом, позволяющим проводить испытания при статической составляющей, изменяющейся с частотой 3,2 мин Усилитель мощности, питающий электромагнитный возбудитель колебаний, транзисторный. Машина снабжена системой управления, позволяющей программировать статическую и динамическую составляющие нагрузки на образец.  [c.122]

Машина для испытаний на усталость с электромеханическим приводом (табл. 4, № 3). Преобразователь динамических перемещений собран из полых цилиндров 3 я 2 (рис. 13). В стенках цилиндров имеются прорези в цилиндре 3 — параллельно образующей, в цилиндре 2 — под углом к ней. Левые торцы цилиндров жестко скреплены между собой. Правый торец наружного цилиндра 2 опирается на плиту 4, а внутреннего цилиндра — соединен с захватом образца 7. При колебаниях рычага 12, угловые перемещения которого задаются кривошипным возбудителем 11, цилиндры закручиваются, причем длина цилиндра 2 изменяется за счет изгиба наклонных перемычек, образованных узкими про-резями, а возникающие при этом осевые перемещения передаются образцу 7 и нагружают его осевой силой. Одновременно происходит и закручивание цилиндра 3, но так как перемычки в нем выполнены параллельно  [c.23]

Различные металлы по-разному противостоят эрозии. В настоящее время не существует расчетных методов оценки эрозионной стойкости материалов. При экспериментальном лабораторном исследовании эрозионной стойкости материалов применяются обычно следующие способы 1) удар струи жидкости по вращающимся образцам, 2) удар капель или струи жидкости (влажного пара) по неподвижным образцам, 3) протекание жидкости с кавитацией у поверхности образца (кавитационные сопла, щелевые установки), 4) испытания образцов на магнитострикционном вибраторе, 5) исследования погруженных в жидкость неподвижных образцов с помощью кольцевого возбудителя колебаний жидкости у поверхности образца. Интенсивность эрозионных разрушений образцов из одинаковых материалов зависит от выбранного способа испытаний. Однако если испытать несколькими способами группу различных материалов, то они по своей эрозионной стойкости расположатся практически в одинаковой последовательности независимо от способа испытаний. Это правило объясняется общностью природы эрозионного разрушения при ударах капель или струй жидкости и при кавитации в жидкой среде и может быть использовано для свободного выбора удобного в данных конкретных условиях способа испытаний. Наибольшей эрозионной стойкостью обладают твердые сплавы типа стеллитов и сормайтов. Затем следуют вольфрам, твердые титановые сплавы и хромоникелевые ста-86  [c.86]

Источником колебаний являлся электродинамический возбудитель, расположенный между основанием и нижней точкой оболочки от начала до конца эксперимента распространение возбуждений сохранялось постоянным. Для облегчения измерений оболочка была первоначально размечена через регулярные интервалы как в окружном, так и в осевом направлении. В процессе испытаний частота возбуждающей силы, производимой резонансным частотным осциллятором, варьировалась в разнообразных пределах. Для регистрации реакции на оболочке был установлен магнитный акселерометр. Чтение его показаний- производилось при помощи вольтметра после соответствующего усиления сигналов. Частота колебаний оболочки определялась по счетчику частот.  [c.261]

ДЛИНОЙ 600 ММ И радиусом 150 мм располагались на опорной-плите симметрично друг относительно друга. Собранное таким образом оборудование устанавливалось на столе электродинамического вибростенда, работающего в диапазоне частот колебаний от 20 до 500 Гц. В динамических испытаниях для определения резонансных частот колебаний использовался бесконтактный датчик индуктивного типа, обеспечивающий связь между напряжением возбудителя и движением оболочки. Соответствующие формы колебаний определялись при  [c.271]

На рис. 1.29 показана схема машины для испытания на усталость при осевом нагружении. Возбудитель состоит из корпуса 3 и- регулируемых неуравновешенных грузов 6, вращение которым передается через гибкий валик от электродвигателя (на схеме не показан). Возникшие при вращении неуравновешенных грузов силы инерции воспринимаются последовательно соединенными образцом 6 и динамометром 7, который жестко закреплен в массивной станине 8. Упругие направляющие 4 корпуса возбудителя выполнены весьма жесткими в поперечном направлении, но эластичными в направлении возбуждающих колебаний, и практически не препятствуют перемещениям возбудителя. Для статического нагружения образца служат пружина 2 и ручной маховичок 1. Частота испытаний достигает примерно 42 Гц, а максимальная переменная нагрузка 25 кН. Определение зада-. ваемой образцу нагрузки осуществляют измерением упругих деформаций динамометра.  [c.68]


Разработана [154] электродинамическая установка длк испытания на усталость лопаток турбин и компрессоров в условиях высоких температур. Частота нагружения от 200 до 3000 Гц, температура испытания до 1200°С. Испытания на усталость замковых соединений лопаток турбин и компрессоров проводят при совместном действии статического растяжения и переменного изгиба на машине резонансного типа [50]. Установка УЛ-(1 предназначена для исследования усталостной прочности лопаток и образцов в резонансном режиме [3]. Разновидностью электромагнитной установки для испытания лопаток является выпускаемая в ЧССР машина Турбо . Лопатки турбомашин испытывают на резонансных частотах Возбуждение колебаний лопаток может осуществляться пульсирующей воздушной струей [50]. Создана многообразцовая электромагнитная машина для испытания на усталость лопаток при одновременном статическом растяжении в условиях высоких температур и специальных сред, а также установка для испытания на усталость диска турбины с укрепленными на нем лопатками с электродинамическим возбудителем колебаний. Имеются установки для испытания лопаток и образцов при растяжении и изгибных колебаниях, а также на термическую уста-лость .  [c.226]

Испытание на кручение может осуществляться с помощью наладок двух вариантов. Для жестких образцов, не требующих при испытании значительных динамических перемещений, используется вариант наладки с неподвижным креплением нагружаемой системы (рис. 68, б). Здесь воамущающее перемещение возбудителя 3 преобраэсюывается в крутильные колебания с помощью траверсы 9 (вид по Б). Для передачи крутящего момента на образец 6 служит жесткий вал, находящийся в корпусе 10. Конец динамометра 7 неподвижно закреплен в кронштейне 8. На концах траверсы 9 помещаются грузы k, величина которых подбирается по формуле (V. 9) так, чтобы момент инерции массы соответствовал возможно большему значению коэффициента эффективности.  [c.113]

Как и в предыдущем случае, возмущающие перемещения от возбудителя через шатун 7 передаются на траверсу 8 и вал 9, на левом конце которого смонтирован зажимной патрон 6 для крепления шлицевого конца полуоси. Фланец полуоси жестко прикреплен ко второй траверсе 2, имеющей возможность совершать угловые колебания в подшипниках корпуса 3, укрепленного на плите 4. Патрон 6 выполнен в виде пакета дисков с регулируемым угловым их взаимораоположевием. Такая конструкция патрона позволяет выбирать люфт в шлицевом соединении, не создавая значительных местных перенапряжений в шлицах, что обеспечивает получение при испытании эксплуатационных видов разрушений.  [c.121]

Данные по сравнительной эрозионной стойкости вольфрама, молибдена, нескольких видов титановых сплавов и других материалов, получающих распространение в последнее время, приведены в (Л. 62]. Опыты были проведены на неподвижных образцах, помещенных в сосуд с кольцевым возбудителем колебаний (рис. 22). Результаты испытаний представлены в табл. 5, из рассмотрения которой следует, что из числа исследованных материалов наибольшей эрозионной стойкостью обладают титановый сплав марки 150-А и вольфр(ам. Исследование образцов, подвергнутых испытанию, показывает, что материалы с пределом прочности цорядка 35-кГ/л1л 2 (никель, латунь, чистый титан) получают пластическую деформацию почти сразу же после начала испытаний. Следовательно, напряжения, возникающие в поверхностном слое материала образца при кавитации,, должны быть не менее этой величины. С другой стороны, поскольку разрушение таких материалов, как вольфрам и титановый сплав марки 150-А с пределом прочности 100 /сГ/л4Л12 и выше, идет очень медленно, Кавитационные напряжения в поверхностном слое, нотви-димому, ниже этой величины.  [c.43]

Примером такого испытательного оборудования может служить стенд для испытаний Т и К -образных сварных узлов из труб при нагружении их осевым усилием или изгибающим моментом [291]. Конструкция стенда предусматривает сочетание кинематического и резонансного способов нагружения, позволяющее снизить нагрузки на возбудитель колебаний динамической системьг при заданных значениях нагрузки Рц на объект испьгганий в 22,5...60 раз. Предусмотренная унификация основных узлов и устройств стецда позволяет осуществлять их комплектацию для воспроизведения требуемых схем нагружения.  [c.159]

На рис. 109,а, б показаны схемы мягкой и жесткой резонансных машин. В первой машине усилие, развиваемое вибратором, передается не непосредственно на образец, а через упругую связь. Это позволяет уменьшить влияние жесткости объекта испытаний на частотный режим колебаний. Колебательная система мягкой машины состоит из упругого динамометра 6, неподвижно укрепленного в массивной станине 7, образца 5, пружины статического нагружения 4 и одной или нескольких пружин 3, непосредственно связанных с инерцнонным возбудителем 2. Амплитудная стабилизация колебаний осуществляется специальным контактным электромеханическим устройством. Для испытаний при асимметричном цикле маховичком 1 изменяют нагруженность пружины 4. Машины этого типа развивают усилия от 0,1 до 0,3 МН (от 10 до 30 тс) при частоте нагружения до 2600 в минуту.  [c.194]

Для испытания податливых деталей используется консервативная схема с креплением динамометра 7 (В подвижной системе, имеющей возможность совершать крутильные колебания в корпусе 11 (рис. 68, г). Моменты инерции массы 12 этой системы и траверсы ц выбираются по формуле (V. 11) таким образом, чтобы нагруженнЬсть и возмущающие перемещения возбудителя были минимальными при колебании обеих траверс в противоположных фазах. Правильно выбирая параметры колебательной системы, можно увеличить общий угол закрутки (при сравнении с предыдущим вариантом) в несколько раз и испытывать очень податливые детали, например многоопорные коленчатые валы двигателей внутреннего сгорания, полуоси задних мостов грузовых автомобилей и т. д.  [c.113]


На упругом элементе динамометра укреплен якорь индукционного датчика 28. Сигнал датчика, несущий информацию о виброскорости актирного захвата /7 и частоте колебаний, подается на устройство управления машиной и питания электромагнитного возбудителя колебаний, которое обеспечивает настройку режима автоколебаний и амплитуды переменной нагрузки на испытуемый образец. Внутри упругого элемента динамометра вдоль его оси расположена тяга 19, одним концом соединенная с фланцем динамометра, на котором укреплен захват 17, а другим — с механизмом 22, преобразующим линейные перемещения тяги в угловые перемещения зеркальца 23.. Луч света от источника 24 падает на зеркальце, и отразившись от него, на шкалу 25. Положение на шкале отраженного луча определяет статическую нагрузку на образец. Высота световой полоски, получающейся на шкале при колебаниях, пропорциональна размаху переменной нагрузки, действующей на образец. При настройке машины шторку 26 устанавливают так, чтобы на фотоэлемент 27 луч света попадал лишь тогда, когда он выйдет за кромку шторки. Получающийся в этом случае сигнал с фотоэлемента служит для ограничения амплитуды нагрузки на заданном пределе. Поскольку ограничитель реагирует только на верхний уровень переменных нагрузок, аппаратуру возбуждения при пуске машины настраивают так, чтобы был запас мощности возбуждения, достаточный для компенсации уменьшения усилия, BOSMOJKHoro в процессе испытания по различным причинам, т. е. при выключенном ограничителе амплитуда нагрузки должна превышать заданную. При нормальном положении шторки  [c.121]

На рис. 51 показана машина УС-20 (ИПП АН УССР) для испытаний при асимметричных циклах нагружения с магнитострикционным возбудителем колебаний.  [c.135]

На рис. 7, в—с приведены динамические схемы машин для испытаний образцов при изгибе силовые схемы этих машин изображены на рис. 4, а и 5, б. На рис. 7, б и г изображены динамические схемы при возбуждении колебаний путем приложения переменной силы к свободному концу образца или к якорю, укрепленному на этом конце, а на рис. 7, д w е динамические схемы при возбуждении колебаний через датчик изгибающего момента Под следует понимать массу якоря укрепленного на конце образца, или (когда якоря не применяют) приведен ную массу, эквивалентную распредс ленной массе образца (или лопатки) при условии, что испытания проводят при колебании системы по первой форме, т. е. на основном тоне. Захват для образца, установленный на упругом элементе динамометра, имеет массу и момент инерции массы Уг-Под Шз подразумевается масса якоря электромагнитного возбудителя колебаний и крепежных устройств для датчика изгибающего момента или масса подвижной системы электродинамического возбудителя колебаний и кре-псжпых устройств датчика изгибающего момента, или масса аналогичных по назначению деталей при использовании возбудителей колебаний других типов.  [c.141]

На рис. 40 показана машина фирмы Amsler для испытаний на усталость при кручении. Испытуемый образец 9 зажимают в захватах 5 и 10. Захват 10 расположен на упругом элементе И манометра. Упругий элемент укреплен на массивном упоре 12, который можно передвигать по станине 2, установленной на рессорах 1 и закреплять в нуж-HO.W месте в зависимости от длины испытуемого образца 9. Захват 8 расположен на маховике 7, соединенном полым валом 3 с якорем 5 электромагнитного возбудителя 4 крутильных колебаний. Полый вал оперт на подшипники 6. С маховиком соединен торсион 25, второй конец которого соединен с полым валом 26, опертым на подшипники 24 и снабженным червячным механизмом 23. Закручивая торсион, сообщают образцу статическую нагрузку кручения.  [c.182]

Э. М. Райхельсон [Л. 43 и 56] сообщают об аналогичном результате сравнения эрозионной стойкости большого количества различных сталей, чугунов, латуней и бронз по результатам испытаний этих материалов на ударном стенде и магнитострикциопном вибраторе. Аналогичную картину можно получить, если сравнить приведенные в Л. 52] результаты испытаний эрозионной стойкости нескольких металлов на приборе с кольцевым возбудителем колебаний с результатами испытаний тех же материалов другими способами. Таким образом, можно считать установленным правило, согласно которому материалы по своей эрозионной стойкости располагаются практически в одинаковой последовательности независимо от способа испытаний . Объясняется это общностью природы эрозионного разрушения при ударах капель жидкости и при кавитации в жидкой среде (см. гл. 3).  [c.29]

Многоцикловая усталость. Справедливость мнения, что турбины подвержены действию многоцикловой усталости, впервые была признана в начале 20-х гг. Многоцикловая усталость рабочих лопаток и деталей камеры сгорания неизменно сопряжена с резонансными колебаниями. Поэтому первая задача конструкторов — определение собственной частоты колебания различных деталей, в первую очередь рабочих лопаток и камеры сгорания. Вторая задача— определить возбудители колебаний, подавить их и затем рассчитать результирующие напряжения. Поскольку форма деталей камеры сгорания и рабочих лопаток сложна, расчет частоты колебаний не так-то прост. Чтобы рассчитать частоту и моду колебаний, а затем и величину локальных напряжений, приходящихся на единичный подавитель и единичный возбудитель колебаний в лопатках, применяют компьютерную программу, в основу которой положена теория сложного пучка или метод анализа конечных элементов. Помимо сведений, необходимых для расчета температуры, конструктору нужны сведения о плотности, модуле Юнга и коэффициенте Пуассона материала. В некоторых конструкциях колебания настолько серьезны, что требуется расчет специальных подавляющих устройств. В качестве таковых используют механические приспособления в виде различного вида упоров распирающих комельные части соседних лопаток, установленных на диске данной ступени. Эффективность подобных устройств оценивают посредством испытаний. В паровых турбинах возбуждение колебаний на каждом обороте ротора может быть очень значительным при впуске пара не по всей окружности турбины. В крупных па-  [c.73]

ЭГВ с комбинированными системами управления, ЭГВ, использующие жидкость, изменяющую вязкость при наложении электростатического поля, или магнитогидравлические возбудители колебании (МГВ) обеспечивают испытания до частот 400— 1000 Гц [11].  [c.455]

В электромагнитных возбудителях колебания создаются в результате воздействия переменного во щ)емени магнитного поля на ферромагнитные тела. Они обладают большой надежностью, простотой регулирования амплитуды вибрации, однако имеют значительную массу, приходящуюся на единицу амплитуды создаваемой силы, отличаются зависимостью амплитуды вибрации от величины нагрузки, что огргщичивает их применение при вибрационных испытаниях.  [c.346]

Гидравлические вибровозбудители создают колебания рабочего органа под действием переменного давления, вызванного пульсирующим потоком рабочей жидкости. Для создания автоколебательных гидравлических вибровозбудителей необходима специальная система управления, обеспечивающая непрерывность возвратно-поступательного движения. Такие вибровозбудители предназначены для испытания объектов больших габаритных размеров, со значительной массой, при низкой частоте возбуждения (табл. 11.12.3). Пневматические возбудители колебаний используют энергику сжатого воздуха. Ретулиро-вание амплитуды и частоты (О...500 Гц) колебаний осуществляется пнеэмоклапаном. Широков применение такие возбудители нашли при исследовании колебаний лопаток рабочих колес вентиляторов и компрессоров (рис.  [c.346]


Основное требование, предъявляемое к возбудителям колебаний, состоит в том, чтобы при передаче на конструкцию необходимых сил они не оказывали существенного вл1 яния на ее инердаонные, жесткостные и демпфирующие свойства. При использовании методов многоточечного возбуждения важны также следующие требования возможность одновременной работы нескольких возбудителей постоянство амплитуды возбуждающей силы в рабочем диапазоне частот малые отклонения сипы от гармонического законна простота управления частотой и амплитудой возбуждающей силы. Известны возбудители колебаний различного типа [14]. Однако указанным выше требованиям удовлетворяют лишь электродинамические вибровозбудители. Они нащ-ли широкое применение при частотных испытаниях.  [c.379]

Во всех экспериментах такого типа для проверки работы устройства перед изготовлением голограммы методом усреднения по времени или методом двух экспозиций полезно применять режим работы голографического интерферометра в реальном времени. Таким образом можно проверить правильность уровня возбуждения и расположения возбудителя. Одновременно можно проверить наличие нежелательного движения опоры голографического устройства. При изучении вибраций особенно полезно сочетание акустического возбуждения и голографической интерферометрии в реальном времени для сканирования спектра возбуждения. Непрерывная природа акустического возбуждения дает гарантию того, что в процессе сканирования не будет пропущена ни одна мода колебаний. При использовании для исследования вибраций стробоскопической голографии необходим контроль в реальном времени, чтобы устанавливать фазу стробирующего импульса относительно цикла вибраций. В тех случаях, когда можно использовать голограмму в реальном времени, она всегда должна предшествовать более сложным испытаниям даже если такая голограмма может и не иметь идеального согласования нулевых полос, с ее помош,ью можно многое узнать о вибрационных испытаниях.  [c.532]


Смотреть страницы где упоминается термин Колебания - Возбудители при испытаниях : [c.124]    [c.189]    [c.297]    [c.318]    [c.457]    [c.80]    [c.59]    [c.133]    [c.184]    [c.185]    [c.333]    [c.274]    [c.146]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.300 ]



ПОИСК



Возбудители колебаний

Колебания - Возбудители при испытаниях колебаний 317, резонансной кривой

Колебания - Возбудители при испытаниях фазовый определения декремента 317 Определение гидродинамических параметров 370 - Экспериментальные исследования



© 2025 Mash-xxl.info Реклама на сайте