Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жаростойкие Тугоплавкие металлы

Низкая жаростойкость тугоплавких металлов — Мо, W, Та, Nb создает большие затруднения при использовании их в качестве жаропрочных материалов. Применение вакуума и защитных сред при технологической обработке и эксплуатации тугоплавких металлов вызывает в некоторых  [c.491]

К первой группе относят металлокерамические сплавы на основе тугоплавких металлов Мо, МЬ, Та, Эти сплавы обладают недостаточной жаростойкостью и не могут быть использованы без защитных покрытий, предохраняющих их от окисления. Применение жаропрочных металлов 2г, Сг, V, Мо, Та и др. и сплавов на их основе возможно до температур около 2000° С. Использование сплавов на основе позволяет повысить рабочую температуру до 2500—2700° С.  [c.229]


Несмотря на то что тугоплавкие металлы (Сг, Та, Nb, Мо, W, Re) имеют высокую температуру плавления, они не обладают термодинамической устойчивостью в окислительной атмосфере. Это относится даже к хрому, если его сравнивать с жаростойкими Ni-Сг-сплавами. Такое явление создает определенное ограничение для использования тугоплавких металлов и их сплавов при повышенных температурах в окислительной атмосфере.  [c.433]

Таблица 15.13. Теплопроводности жаростойких и жаропрочных сплавов и сплавов на основе тугоплавких металлов [7, 22] Таблица 15.13. Теплопроводности жаростойких и <a href="/info/51119">жаропрочных сплавов</a> и сплавов на основе тугоплавких металлов [7, 22]
Жаростойкость силицидов тугоплавких металлов, их защитные свойства в большой мере зависят от структуры, чистоты, пористости, стехиометрического состава и других факторов, которые определяются условиями получения этих материалов.  [c.68]

Для жаростойкой защиты молибдена и вольфрама широкое распространение получило диффузионное силицирование. Благодаря летучести высших окислов молибдена и вольфрама на поверхности силицидов этих металлов при их окислении образуется пленка практически чистого кремнезема, что и определяет их высокую жаростойкость. Однако в силицидных покрытиях на тугоплавких металлах вследствие различия коэффициентов термического расширения металлов и силицидов всегда имеются микротрещины, образующиеся при охлаждении образцов от тем-  [c.4]

Весьма перспективными являются обладающие высокой конструкционной надежностью плакированные трехслойные композиции типа высокопрочная сталь + нержавеющая аустенитная сталь или тугоплавкий металл + жаростойкий сплав II—3).  [c.238]

К числу жаростойких материалов относятся тугоплавкие металлы вольфрам, молибден, ниобий и некоторые другие. Все они очень сильно окисляются, что затрудняет их применение без специальной защиты, которую трудно создавать, они практически не могут быть использованы. Температура плавления многих из неметаллических тугоплавких материалов превосходит, и иногда значительно, 3000 °С.  [c.288]

Тугоплавкие металлы и их сплавы нашли применение в современной технике вследствие исключительно высокой жаростойкости и достаточно высокой прочности.  [c.37]


Тугоплавкие металлы могут работать в вакууме, в восстановительной и нейтральной атмосферах и в некоторых агрессивных и жидкометаллических средах. В окислительной атмосфере при высокой температуре тугоплавкие металлы не жаростойки в этом случае их можно применять со специальным защитным покрытием.  [c.393]

Сплавы на основе А1, Mg. тугоплавких металлов, упрочненных окислами <А1, 2г, Mg и др.) отличаются повышенными показателями жаропрочности и жаростойкости  [c.882]

В паяемых конструкциях применяют стали всех типов, чугуны, никелевые сплавы (жаропрочные, жаростойкие, кислотостойкие), медь и ее сплавы, а также легкие сплавы на основе титана, алюминия, магния и бериллия (табл. 47). Ограниченное применение имеют сплавы на основе тугоплавких металлов хрома, ниобия, молибдена, тантала и вольфрама.  [c.239]

Тугоплавкие металлы (Мо, W, Та, Nb) имеют низкую жаростойкость. Они не могут работать в окислительных средах при температуре выше 500 °С. Объемное легирование повышает жаростойкость (разработаны сплавы ниобия с повышенной жаростойкостью [7]), Основные усилия специалистов направлены на разработку защитных покрытий [6].  [c.408]

Общим недостатком тугоплавких металлов является низкая жаростойкость, исключающая возможность использования их в качестве жаропрочных материалов без специальных защитных покрытий. Успешно в качестве жаропрочных материалов тугоплавкие металлы могут работать в вакууме и в атмосфере инертных газов. При легировании тугоплавких металлов жаропрочность ниобия и тантала повышается, а технологические свойства молибдена и вольфрама улучшаются.  [c.439]

Титан - тугоплавкий металл [температура плавления (1665 5) °С, плотность 4500 кг/м ]. Временное сопротивление чистого титана = 250 МПа, относительное удлинение 5 = 70 % он обладает высокой коррозионной стойкостью. Удельная прочность титана выше, чем у многих легированных конструкционных сталей. Поэтому при замене сталей титановыми сплавами можно при равной прочности уменьшить массу детали на 40 %. Однако титан имеет низкую жаростойкость, так как при температурах выше 500. .. 600 °С легко окисляется и поглощает водород. Титан хорошо обрабатывается давлением, сваривается, из него изготовляют сложные отливки, но обработка его резанием затруднительна.  [c.24]

Большой недостаток тугоплавких металлов — низкая жаростойкость, поэтому при температурах свыше 400...600°С их нужно защищать от окисления. Тугоплавкие металлы трудно обрабатываются, так как имеют большое сопротивление пластическому деформированию.  [c.198]

Общеизвестно широкое применение цветных металлов и сплавов на их основе в различных области производства. Так, алюминиевые, магниевые и титановые сплавы широко применяются в авиационной промышленности. В то же время изделия из легких сплавов используют в строительстве, транспортном машиностроении, приборостроении, судостроении и других отраслях промышленности. Медь обладает высокой электрической проводимостью и широко применяется в электротехнике она является также основой многих важных промышленных сплавов (например, латуней, бронз и др.). Основой многих жаростойких, жаропрочных и электротехнических сплавов является никель. Одновременно он часто используется как легирующий элемент в специальных сталях. В качестве конструкционных материалов для новой техники широко используют тугоплавкие металлы (вольфрам, молибден, ниобий, хром и др.), а также сплавы на их основе.  [c.176]

Высокую жаропрочность обнаруживают сплавы на никелевой основе. Наивысшей жаропрочностью отличаются сплавы на основе тугоплавких металлов, например наиболее распространенные молибденовые. Очень высокой жаропрочностью и жаростойкостью отличаются также металлокерамические материалы, так называемые керметы (описаны в главе Порошковая металлургия ), но они пока отличаются недостаточной пластичностью.  [c.404]

Ниобий. Ниобий распространен в природе несколько больше, чем молибден. СССР обладает достаточными запасами руд ниобия ниобий как тугоплавкий металл производится методом порошковой металлургии, вакуумной дуговой или электронно-лучевой плавкой. Ниобий имеет кристаллическую решетку центрированного куба в сравнении с молибденом он имеет преимущество в меньшем удельном весе 8,57. Ниобий отличается высокой жаропрочностью, его жаростойкость несколько выше, чем у молибдена, а главное он технологичен, пластичен и хорошо сваривается. Малое поперечное сечение захвата им тепловых нейтронов и коррозионная стойкость его при 800° С в жидких металлах являются весьма ценными свойствами для атомной промышленности.  [c.407]


Сплав обладает наивысшей жаростойкостью в том случае, когда окалина, находящаяся в контакте с металлом, состоит исключительно из жаростойкого тугоплавкого окисла [736, 741, 742].  [c.662]

При комнатной температуре тугоплавкие металлы имеют высокую коррозионную стойкость, но при высоких температурах, вследствие высокой скорости окисления, недостаточной плотности прилегания к металлу и летучести их окислов они, за исключением хрома, отличаются очень плохой жаростойкостью. Если принять наиболее плохую жаростойкость (сопротивление окислению) молибдена за 1, то соответственно жаростойкость у разных металлов будет у тантала 1,4 у ниобия 2,3 у вольфрама 14 у циркония 27 у титана 54 у хрома 320 у нержавеющей стали 1Х18Н9Т—1600. Поэтому для создания необходимой жаростойкости тугоплавкйе металлы и их сплавы следует применять с защитными покрытиями, а в отдельных случаях создавать у них путем легирования более прочные и менее летучие пленки окислов на поверхности. Способность обрабатываться давлением, резанием, подвергаться сварке, отливке и т. д., т. е. технологичность у тугоплавких металлов, очень низкая, особенно у вольфрама. Поэтому среди тугоплавких металлов наибольшее применение в настоящее время получили молибден и ниобий, технологичность которых сравнительно удовлетворительна.  [c.405]

Одно из весьма распространенных защитных покрытий для тугоплавких металлов и сплавов, прежде всего на основе ниобия и тантала — покрытие, наносимое из расплавов 8п—А1, содержащих от 5 до 50% (по массе) А1. В зависимости от состава сплава и материала основы выбирают временный и температурный режим обработки. Обзор способов повыщения жаростойкости тугоплавких металлов (ЫЬ, Та, Мо н и ) и их сплавов с помощью 5п—А1 покрытий сделан в работе [336]. Основную защитную функцию выполняет алюминидное покрытие, а олово, по мнению автора работы [336], играет роль мягкого напряженного барьера между окислом, образующимся на поверхности, и интерметаллндом, облегчая доставку алюминия к местам повреждения покрытия и обеспечивая тем самым быстрое залечивание этих повреждений. Именно в способности самозалечивания и состоит одно из основных преимуществ 5п—А1 покрытий перед другими. Свойства покрытий улучщают легированием сплава такими элементами, как Т1, Сг, Мо, 51. В этом случае обычно образуются композиционные покрытия на основе силицидов и алюминидов.  [c.298]

Подобие двойных диаграмм состояния и одинаковая кристаллическая структура ниобия, тантала, молибдена и вольфрама и образующихся силицидов предопределяют сходство в закономерностях образования и строения диффузионного слоя. Известно, что высокая жаростойкость тугоплавких металлов достигается при создании на поверхности металлов дисилицидов — Ме81з.  [c.73]

Низкая жаростойкость тугоплавких металлов обусловлена летучестью их оксидов ( 1г, Ru, Os ), легкоплавкостью и летучестью оксидов ( Мо, V, Re ), разрушением иленки за счет У м О, 2 м>2,5 (Та, Nb, W ), исиарением самих металлов. В этих условиях нанра-влениями жаростойкого легирования являются нолучение сложных нелетучих оксидов (Nb+Ti, Mo+Ni, Mo+Ni+Mn) ириближение УмтОшп/г/Ум в 1 (Nb+Mo) исиользование эле-  [c.63]

Основным недостатком большинства тугоплавких металлов является низкая сопротивляемость окислению. Исключение составляет хром, хотя и его жаростойкость ниже, чем никельхро-мовых сплавов.  [c.533]

Хорошо известные жаропрочные и жаростойкие сплавы, применяемые при изготовлении двигателей внутреннего сгорания, литейной оснастки (пресс-форм), кузнечных штампов, турбовинтовых и газотурбинных двигателей, работающих при средних (300 - 500°С) и высокотемпературных режимах (700 - 1000°С), подразделяют на четыре группы жапропрочные сплавы па основе железа (элементы четвертого периода никеля, кобальта) и жаропрочные сплавы на основе тугоплавких металлов (элементы пятого и шестого периодов).  [c.32]

В последние годы ишроко применяют металлизационный метод плазменного напыления, позволяющий наносить любые материалы, в том числе тугоплавкие металлы и окислы, создавая покрытия с заданными эксплуатационными свойствами износостойкие, коррозионно-стойкие, жаростойкие, электроизоляционные и др.  [c.110]

Электронно-лучевая снарка позволяет получать сварные соединения из окончательно обработанных деталей без их существенных деформаций (например, блоки зубчатых колес взамен крупных поковок). с лектронно-лучевая сварка гарантирует высокое качество сварного соединения детг1лей из тугоплавких металлов, жаропрочных, жаростойких и других материалов со скоростью, не уступающей дугоной сварке.  [c.155]

Исследование свойств покрытий, большинство которых в момент наплавления представляет собой пиросуспензии или пирозоли, позволило разработать основные принципы регулирования свойств расплавов или пиросуспензий и найти физико-химические закономерности образования покрытий из расплавленного состояния. Установлены некоторые общие закономерности зависимости жаростойкости покрытий от скорости процессов диффузии, развивающихся на границе раздела покрытие—тугоплавкий металл. Показано, что скорость процессов диффузии атомов одного и того же элемента определяется свойствами соединений, в которые входит рассматриваемый элемент.  [c.4]

Одной из валснейших областей применения тугоплавких соединений являются жаростойкие покрытия. Силициды, алюминиды и бериллиды тугоплавких металлов при высоких температурах (свыше 1000°) обладают превосходной стойкостью против окисления. Однако при низких или так называемых промен уточных) температурах эти и некоторые другие соединения ведут себя аномально. Аномалия заключается в том, что как отдельные образцы, так, и покрытия из перечисленных материалов в окислительных средах разрушаются, в течение относительно короткого времени превращаясь в порошкообразную массу. В критическом темпе-  [c.286]


Покрытия из дисилицидов молибдена и вольфрама, чистые или легированные, являются одним из наиболее эффективных средств защиты тугоплавких металлов от высокотемпературного окисления. Исследование жаростойкости и кинетики окисления такого типа покрытий проводилось главным образом на воздухе [1]. Практический и научный интерес представляет проблема окисления сили-цидных покрытий при низких давлениях кислорода. В данной работе проведено изучение кинетики окисления покрытий силицидного типа на молибденовом сплаве ЦМВ-30 (состав, мас.% 30W, 0.1Т1, 0.01С, остальное Мо) [2].  [c.198]

Во многих случаях попытки улучшения жаростойкости материалов металлургическим путем не дали положительных эффектов. Результаты, достигнутые в последние годы в этол1 направлении, позволяют считать, что применение загцитных жаростойких покрытий для ответственных конструкций, работающих при температурах выше 800°С,— наиболее реальный и перспективный путь повышения конструктивной прочности. Защитные покрытия могут формироваться из различных ншростойких материалов тугоплавких металлов и сплавов, керамико-металлических соединений, керамик (тугоплавких оксидов, боридов, карбидов).  [c.125]

Применяя низкотемпературную плазму, можно наносить покрытия практически из всех материалов, которые в плазменной струе не сублимируют и не претерпевают интенсивного разложения. Нанесение износостойких, антифрикционных, коррознонно- и жаростойких покрытий плазменным напылением значительно расширяет круг применяемых материалов и улучшает качество покрытий, получаемых газотермическим напылением. Следует отметить, что некоторые тугоплавкие металлы и керамические материалы можно нанести только плазменным методом. Этот метод получает все большее развитие и применение в промышленности.  [c.139]

В различных областях техники необходимы материалы, обладающие высокой жаростойкостью и жаропрочностью, химической и термической стойкостью, специальными свойствами, твердостью и т.д. Основу таких материалов могут составлять карбиды, нитриды, бориды и силициды переходных металлов III - VIII групп Периодической системы Д.И.Мен-делеева, в атомах которых происходит заполнение недостроенных электронных уровней элементы с порядковыми номерами 21 - 28 (S , Ti, V, r, Mn, Fe, o, Ni), 39 - 46 (V, Zr, Nb, Mo, T , Ru, Rh, Pd), 57- 78 (La, редкоземельные металлы, Hf, Та, W, Re, Os, Ir, Pt) и 89- 92 (A , Th, Pa, U). Наибольшее значение имеют твердые тугоплавкие соединения указанных выше тугоплавких металлов.  [c.161]

Тугоплавкие металлы обладают низкой жаростойкостью. При температуре свыше 400—600 °С их нужно защищать от окисления, иначе свойства тугоплавких металлов и сплавов резко ухудшаются. Для этих целей применяют металлические, интерметаллические и керамические покрытия. Для молибдена и вольфрама в качестве защитных покрытий наиболее часто используют силицидные покрытия (Мо812,  [c.211]

WSi2). При работе деталей в вакууме, инертных средах необходимость в защитных покрытиях отпадает. Не требуется защитных покрытий для деталей и сплавов хрома, так как он обладает жаростойкостью до 1000 °С из-за образования плотной тугоплавкой оксидной пленки СГ2О3. Высокая окисляемость тугоплавких металлов (например, для вольфрама заметная 1фи 500—800 °С, рис. 8.9) создает определенные проблемы при осуществлении некоторых технологических процессов при производстве деталей и узлов из них, особенно при литье, сварке, горячей обработке давлением.  [c.211]

Монокристаллические отливки получают как из традиционных, так и специально разработанных для данного процесса сплавов. При создании новых сплавов для монокристаллического литья нет необходимости вводить в них элементы, упрочняющие границы зерен (С, В, Hf, Zr, РЗМ), поскольку не существует большеугловых границ. Поэтому в безуглеродистых сплавах отсутствуют карбиды и остаются только у- и у -фазы. Дальнейшее повышение стабильности сплава (т. е. повышение температур солидуса и полного растворения у -фазы) может быть достигнуто оптимальным его легированием тугоплавкими металлами (W, Та, Re, Мо) и у -стабилизаторами (Ti, Та). Это приводит к существенному торможению контролируемых диффузией высокотемпературных процессов, в том числе коагуляции у -фазы. Важная роль при легировании уделяется рению (до 3%), в основном располагающемуся в у-твердом растворе. Содержащие рений сплавы (например, ЖС36) отличаются более узким интервалом кристаллизации. Так, температуры ликвидуса, солидуса и полного растворения у -фазы в сплаве ЖС36 равны соответственно 1409, 1337 и 1295 °С. Снижение содержания хрома (а следовательно, и жаростойкости) компенсируют добавками Hf и Y, образующими на поверхности плотные жаростойкие оксидные пленки. В связи с применением направленной кристаллизации значительно расширились возможности использования экономно легированных жаропрочных сплавов на основе интерметаллида №зА1. Так, например, установлено, что отливки из этих сплавов с монокристаллической структурой и кристаллографической ориентацией [111] обладают оптимальным сочетанием физико-механических свойств при температурах до 1200 °С высокими показателями жаропрочности, термоусталостной прочности и жаростойкости.  [c.367]

До температуры 300° С применяются обычные конструкционные стали, от 300 до 550° С теплостойкие, от 550 до 1000° С жаропрочные и жаростойкие стали и сплавы, а выше 1000° С особожаропрочные сплавы на основе тугоплавких металлов.  [c.392]

Недостатками графита являются хрупкость и низкая жаростойкость. Он начинает окисляться на воздухе уже при 450-500 °С. Поэтому для повышения жаростойкости графита прибегают к покрытию готовых изделий тугоплавкими металлами, твердыми сплавами, керамикой (А1,Оз), силицированию и боросилицированию.  [c.259]

При более высоких температурах эксплуатации (выше 1050—1100°С) необходимо применение сплавов на основе тугоплавких металлов Nb, Мо, Та, W Однако использование этих элементов в качестве основы жаропрочных спла ВОВ ставит перед металловедами и технологами много сложных проблем, связанных с их низкой жаростойкостью в окислительных средах и высокой хрупкостью  [c.322]

Возможности повышения рабочих температур современных жаропрочных и жаростойких сплавов на основе титана, никеля и тугоплавких металлов за счет их твердораствор-ного упрочнения или создания гетерофазных структур практически исчерпаны. Поэтому большое внимание исследователей привлекают композиционные материалы на основе интерметаллидов, тугоплавких металлов и направленно закристаллизованных эвтектик, упрочненные дисперсными включениями, дискретными или непрерывными волокнами олее тугоплавких, прочных и жестких, чем матрица, фаз, в том числе керамических.  [c.213]


Смотреть страницы где упоминается термин Жаростойкие Тугоплавкие металлы : [c.116]    [c.118]    [c.313]    [c.262]    [c.7]    [c.117]    [c.377]    [c.90]    [c.110]   
Конструкционные материалы (1990) -- [ c.408 ]



ПОИСК



Жаростойкое легирование тугоплавких металлов

Жаростойкость

Жаростойкость металлов

Изделия из жаростойких из тугоплавких металлов

Металлы тугоплавкие



© 2025 Mash-xxl.info Реклама на сайте