Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение волновое динамическое основное

Импульсное нагружение представляет собой кратковременное термосиловое воздействие с высокой концентрацией энергии. В слоистой конструкции будут возникать и распространяться волны напряжений, претерпевая многочисленные преломления и отражения от границ слоев. Соответствующий точный анализ напряженно-деформированного состояния слоистой оболочки при учете внутренней картины волновых явлений возможен при использовании динамических уравнений теории упругости. Однако реализация такого подхода чрезвычайно затруднительна. Используемые здесь линейные уравнения (9.1), основанные на гипотезе прямых нормалей для несущих слоев, правильно описывают распространение волн деформаций срединной поверхности, но искажают фазовую скорость изгибных волн, которая при уменьшении длины волны будет неограниченно возрастать. В действительности с большой скоростью движутся короткие волны малой амплитуды, которые из-за демпфирования в оболочке можно не учитывать. Волны, несущие основную энергию изгиба, имеют достаточно большую длину, движутся с конечной скоростью и вполне правильно описываются классическими уравнениями. Поэтому даже на основе линейной теории оказывается возможным выявить в первом приближении основные закономерности нестационарного поведения трехслойной оболочки при импульсном нагружении [286].  [c.491]


Практическим результатом исследований упругопластических свойств материалов при ударно-волновом нагружении являются модели и определяющие соотношения, пригодные для расчета сопротивления деформированию в комплексах программ численного моделирования интенсивных импульсных воздействий. С другой стороны, численное моделирование в сочетании с динамическими измерениями является одним из инструментов в исследованиях механизмов высокоскоростной деформации. В идеале, определяющие уравнения должны адекватно и точно описывать реакцию материала в широком диапазоне скоростей деформирования, деформаций, давления, температуры, поврежденности, структурных и других параметров состояния. Выяснилось, однако, что, такое исчерпывающее описание, будучи вполне возможным в принципе, столь сложно и громоздко в реализации, что теряется его практическая целесообразность. Поэтому обычно используются упрощенные модели, обобщающие результаты измерений и применимые в ограниченной области параметров нагрузки. Достаточно полный обзор таких моделей можно найти, например, в работах [1—3]. В этой главе представлены лишь основные сведения о некоторых из них.  [c.135]

Таким образом, уравнение Бернулли—Эйлера по существу определяет волновой характер динамического изгиба стержня, но в отличие от продольной изгибная волна (точнее — основная доля ее энергии) распространяется с переменной скоростью, пропорциональной  [c.262]

Еще одна из систем, для которых уравнение движения имеет форму одномерного волнового уравнения, показана на рис.5.10, а. Система представляет собой предварительно растянутую, не обладающую жесткостью при изгибе нить, которая может свободно колебаться в поперечном направлении. Предполагается, что растягивающая сила S в нити остается постоянной при малых колебаниях в плоскости ху. Обозначим через у поперечное перемещение произвольной точки нити, отстоящей на расстоянии х от левого конца. На рис. 5.10, б показаны силы, действующие на малый элемент нити длиной dx, при этом основной интерес представляют проекции этих сил на ось у. При колебаниях сила инерции уравновешивается растягивающими силами, приложенными к концам малого элемента нити. При малых углах наклона из условий динамического равновесия следует  [c.366]


В инженерной практике широко распространены конструкции, элементы которых имеют полости или отсеки, содержащие жидкость, иапример, объекты авиационной и ракетно-космической техники, танкеры и плавучие топливозаправочные станции, суда для перевозки сжиженных газов и стационарные резервуары, предназначенные для хранения нефтепродуктов и сжиженных газов, ректификационные колонны и т. д. В большинстве случаев жидкость-заполняет соответствующие полостн или отсеки лишь частично, так что имеется свободная поверхность, являющаяся границей раздела между жидкостью и находящимся над ней газом (в частности, воздухом). Обычно можно считать (за исключением особых случаев движения тела с жидкостью в условиях, близких к невесомости, которые здесь не рассматриваются), что колебания жидкости происходят в поле массовых сил, гравитационных и инерционных, связанных с некоторым невозмущенным движением. Как правило, это поле можно в первом приближении считать потенциальным, а само возмущенное движение отсека и жидкости — носящим характер малых колебаний, что Оправдывает линеаризацию уравнений возмущенного движения. Ряд актуальных для практики случаев возмущенного движения жидкости характеризуется большими числами Рейнольдса, что позволяет использовать при описании этого движения концепцию пограничного слоя, считая, кроме того, жидкость несжимаемой. Эти гипотезы лежат в основе теории, излагаемой ниже [23, 28, 32, 34, 45, 54J. Учету нелинейности немалых колебаний жидкости посвящены, например, работы [15, 26, 29, 30]. Взаимное влияние колебаний отсека и жидкости при ее волновых движениях может сильно изменять устойчивость системы, а иногда порождать неустойчивость, невозможную при отсутствии подвижности жидкости. В качестве примера можно привести резкое ухудшение остойчивости корабля при наличии жидких грузов и Динамическую неустойчивость автоматически управляемых ракет-носителей и космических аппаратов с жидкостными ракетными двигателями при неправильном выборе структуры или параметров автомата стабилизации. Поэтому одной из основных Задач при проектировании всех этих объектов является обеспечение их динамической устойчивости [9, 10, 39, 43]. Для гражданских и промышленных сооружений с отсеками, содержащими жидкость, центр тяжести при исследовании их динамики смещается в область определения дополнительных гидродинамических нагрузок, например при сейсмических колебаниях сооружения [31].  [c.61]

При изучении сложных нелинейных процессов, поддающихся исследованию ана дитическими методами с большим трудом, ЭВМ позволяют провести большие чис ленные эксперименты с целью проверки или выдвижения гипотез о качественной или количественной стороне нелинейного явления. Обнаруженная эвристическим путем на ЭВМ закономерность может служить источником новых аналитических разработок и исследований. Такое применение ЭВМ привлекало внимание многих ученых уже с самого начала появления ЭВМ. Так, одна из первых ЭВМ была использована Ферми и Уламом [32] с целью исследования распределения энергии по частотам в нелинейных волновых процессах. Ими было обнаружено аномальное, сохраняющееся длительное время, распределение энергии по первым основным частотам. Полное аналитическое исследование этого факта отсутствует и в настоящее время. С помощью ЭВМ был об-наружен и целый ряд других очень интересных и необычных эффектов в нелинейных процессах. Упомянем в этой связи образование странных аттракторов — сложных предельных многообразий нелинейных динамических систем, к которым приближа ются со временем траектории динамической системы [33], открытие так называемого Т-слоя в плазме, неожиданно образуюпдегося при разлете плазменного шнура. Такой Т-слой характеризуется аномально высокой температурой [34]. С помощью ЭВМ в последнее десятилетие было сделано удивительное открытие о количественной уни версальности поведения широкого класса нелинейных систем уравнений, зависящих от параметра, в процессе ветвления решений при изменении параметра, когда число решений может неограниченно расти с удвоением периода. Оказалось, что две посто янные а = 4.6692. .. и Л = 2.5029. .. характеризуют переход к хаотическому поведе нию решений очень широкого класса нелинейных систем уравнений [35]. Аккуратное аналитическое обоснование этого факта еще ждет своих исследователей.  [c.24]


На практике исследователь всегда имеет дело с пучками, ограниченными в поперечном сечении, что, вообще говоря, требует решения уравнений в частных производных для описания распространения волновых пучков. Однако, если угловая селективность записываемых в среде решеток существенно меньше угловой расходимости взаимодействующих пучков, пучки в поперечном сечении могут быть разбиты на квазиплос-кие участки, распространение которых через среду описывается приближением плоских волн. В другом предельном случае, когда угловая селективность решеток существенно больше угловой расходимости пучков, может быть применена модовая теория голограмм [1], исходя из которой в случае спекл-неоднородных волн в работе [2] было показано, что для средней мощности таких волн в схеме четырехволнового смешения получаются уравнения, подобные уравнениям для плоских волн. В промежуточном случае получить аналитическое решение в общем виде не представляется возможным. Однако во всех случаях приближение взаимодействующих плоских волн позволяет достаточно правильно определить такие основные параметры генераторов на динамических решетках, как порог и достижимая мощность генерации, спектральный состав и тл. Поэтому в этой главе рассмотрим теорию четырехволнового смешения в приближении плоских волн с медленно меняющимися амплитудами.  [c.63]

Рассмотрим теперь некоторые случаи, в которых на статистический режим мелкомасштабных пульсаций влияют те или иные дополнительные факторы. Начнем с исследования характеристик поля Ь(х, /) концентрации динамически пассивной примеси, претерпевающей в ходе турбулентного перемешивания радиоактивный распад или химическую реакцию первого пормка (ср. выше п. 21.7). Предположим, что в потоке имеются источники примеси. приводящие к тому, что среднее поле А (дс, 1) мало меняется и за время = и за времена т = (v/ ) / и То = (х/ ). а также примем, что типичный пространственный масштаб о полей А (дс, 1) и и (дс, 1) намного превосходит длины т] = и % = В таком случае статистический режим пульсаций поля (дс, I) с масштабами I (или волновыми числами к 1/Ао) можно считать локально изотропным и квазистационарным. Из основного динамического уравнения (21.101), которому удовлетворяет поле А (дс, 1), вытекает, что уравнение для спектра ( ) = в области к 1/Ао будет иметь вид  [c.383]


Смотреть страницы где упоминается термин Уравнение волновое динамическое основное : [c.17]   
Теоретическая механика (1976) -- [ c.105 ]



ПОИСК



Уравнение волновое уравнение

Уравнение динамическое

Уравнение основное

Уравнения волновые

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте