Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Генерация мощность

С появлением мощных газовых лазеров, обеспечивающих в режиме непрерывной генерации мощность порядка нескольких киловатт, существенно расширилась область применения лазерного излучения для изменения свойств поверхностных слоев материалов. Этот вид обработки целесообразно использовать только в тех случаях, когда применение обычных методов поверхностного упрочнения (например, индукционной закалки) связано с определенными трудностями или вообще невозможно. Такая рекомендация приведена потому, что для обеспечения производительности лазерного упрочнения, срав-  [c.112]


В настоящее время промышленностью выпускаются рубиновые лазеры с различной энергией излучения. Следует иметь в виду, что мощность излучения при малых длительностях импульса оказывается очень большой. Например, при 100 Дж энергии, излученной в режиме свободной генерации, мощность импульса составляет 100 кВт.  [c.25]

С появлением газодинамических СОз-лазеров, обеспечивающих в режиме непрерывной генерации мощность, равную нескольким десяткам киловатт, стало возможным использовать их для сварки. Так, излучением непрерывного газодинамического СОа-лазера мощностью до 20 кВт удалось проплавить нержавеющую сталь на глубину 1,3 см при скорости перемещения луча по материалу до 254 см/мин отношение глубины к средней ширине зоны прогрева составляло 5 1 [214].  [c.137]

В машине применен лазер, работающий в режиме свободной генерации. Мощность светового излучения, управляемая следящей системой пропорционально величине остаточной неуравновешенности ротора, находится в пределах от 2 до 30 дж, частота повторения и.мпульсов 4 имп/мин, длительность излучения 0,5— 0,8 м/сек.  [c.21]

Лазеры на центрах окраски имеют следующие параметры. Типичная пороговая мощность накачки составляет порядка нескольких десятков милливатт (при фокусировке излучения накачки в кристалле в пятно диаметром 20 мкм). Получена непрерывная генерация мощностью 1 Вт при дифференциальном КПД до 7 % для / л-центров и до 60 % Для центров окраски. То, что дифференциальные КПД этих двух типов лазеров различаются почти на порядок, нуждается в пояснении. Такое различие  [c.427]

В последних двух установках (см. табл. 13) в качестве источника излучения используется лазер на гранате с неодимом, работающий в режиме непрерывной генерации, мощность излучения регулируется в пределах от нуля до 125 Вт..  [c.69]

Равновесной тепловой населенностью всех уровней, кроме самого нижнего Ng, можно пренебречь Рассчитайте основные характеристики лазера на алюмо-иттриевом гранате с неодимом (N(1 У АС лазер) в режиме непрерьшной генерации мощность генерации при Г1 1,2, пороговую разность населенностей КПД. Длина волны изучения такого лазера = 1,06 мкм, = 0,55 мс, сечение поглощения (вынужденного излучения) в центре рабочего перехода о - 9 10" см ,л = 1,5, время жизни фотона в резонаторе 10 не. Му 5 10 см .  [c.23]

Максимальная мощность непрерывной генерации — мощность генерации непрерывно накачиваемого лазера без модуляции потерь с оптимальным коэффициентом отражения выходного зерка-  [c.281]


Экспериментальный кипящий водяной реактор. Образование паровых пузырей в кипящих водяных реакторах является важным механизмом обратных связей, посредством которого мощность реактора влияет на реактивность. В ранних исследованиях таких реакторов [60] считалось, что они должны быть сконструированы так, чтобы образование паровых полостей уменьшало реактивность. Тем не менее опасались, что из-за наличия временного интервала, существующего между процессами генерации мощности и образованием пузырей, реактор может стать неустойчивым или иметь осцилляции мощности (см. разд. 9. 4. 7).  [c.408]

В цикле генерации мощности воздух из резервуара 1 через рекуператор 5 вместе с небольшим количеством газообразного или жидкого топлива подается в камеры сгорания турбины 2.  [c.92]

К первой группе относится гелий-неоновый лазер, схема которого приведена на рис. 3.6. Генерация когерентного излучения может проходить в видимой (Xj = 0,633 мкм) и в инфракрасной области (Я.2= 1,15 мкм, = 3,39 мкм). Газоразрядная трубка 1 этого лазера заполняется гелием и неоном при парциальных давлениях соответственно 133 и 13 Па. В трубке от высоковольтного источника питания 2 создается электрический разряд 3, который возбуждает атомы гелия и неона в результате электронных ударов. Излучение выходит из полупрозрачного зеркала 4. Гелий-неоновый лазер имеет сравнительно небольшую мощность, но из-за простоты устройства, надежности и стабильности излучения он получил широкое распространение.  [c.122]

Вт с 1 см газа при к.п.д. до 17%. Электроразрядные лазеры с поперечной прокачкой газа работают в непрерывном режиме генерации и развивают мощность до 50 кВт.  [c.123]

Многочисленные эксперименты, проведенные со световыми пучками мощностью порядка 10 Вт/см и больше, убедительно показали, что характер оптических явлений существенно зависит от интенсивности излучения. Область оптики, изучающую оптические явления, характер которых зависит от интенсивности излучения, принято называть нелинейной оптикой. Это новое направление оптики стало бурно развиваться начиная с 1962 г., когда впервые была обнаружена генерация второй гармоники (эффект удвоения частоты).  [c.9]

Величина коэффициента полезного действия (отношение мощности второй гармоники к мощности падающего излучения) генерации второй гармоники, даже при предельной мощности и при длине 1 10" см, незначительная (не превышает тысячных долей процента).  [c.405]

Лампа генераторная — электронная лампа, предназначенная для усиления и генерации электрических колебаний высокой частоты значительной мощности [9].  [c.146]

В последнее время световое давление снова привлекло внимание исследователей. Для экспериментов в этой области оказались весьма удобными некоторые свойства лазеров, а именно монохроматичность излучения и эквивалентность лазера точечному источнику света. Лазерное излучение может быть сфокусировано с высокой точностью . При использовании хороших оптических систем (см. 6.8) можно сфокусировать лазерное излучение в пятно с радиусом того же порядка величины, что и длина волны генерации. Простые оценки показывают, что если в фокусе лазерного излучения мощностью 1 Вт (такая большая мощность легко реализуется, например, в аргоновом лазере, генерирующем в зеленой области спектра) оказывается малая частица с массой 10 г, полностью отражающая излучение, то под действием светового давления она должна получить ускорение, в миллион раз превышающее ускорение свободного падения.  [c.111]

В соответствии со сказанным выше, стационарная мощность генерации определяется условием  [c.781]

Можно сказать, следовательно, что условие стационарной генерации эквивалентно равенству мощности излучаемой в объеме ЗЬ активной среды, и потока си5(1 — эфф). выходящего из резонатора.  [c.781]

Вычислим стационарную мощность генерации. С этой целью воспользуемся соотношением (224.4), которое представим в виде  [c.781]

Для возбуждения генерации обычно пользуются импульсными газоразрядными лампами, дающими яркую световую вспышку длительностью порядка одной миллисекунды. Для возникновения генерации световая мощность, непосредственно используемая для возбуждения ионов хрома в 1 см рубина, должна составить около 2 кВт. Если лампа обеспечивает такую мощность возбуждения, то рубиновый лазер генерирует световой импульс с длительностью, несколько меньшей длительности свечения лампы. На экране, расположенном параллельно полупрозрачному зеркалу на торце рубинового стержня, можно увидеть ослепительно яркую  [c.787]


Полученный результат совпадает с соотношением (225.3). Напомним, что коэффициент усиления зависит от амплитуды поля. Поэтому (228.1) следует рассматривать как уравнение для амплитуды. Таким образом, принцип цикличности может служить основой для вычисления стационарной мощности генерации.  [c.796]

Кратко обсудим нелинейные явления, приводящие к возникновению сверхкоротких импульсов в лазерах с поглощающим элементом внутри резонатора. Пусть создана инверсная заселенность уровней в активном элементе лазера и происходит усиление спонтанного излучения. Ввиду случайного характера актов спонтанного испускания амплитуда поля хаотически изменяется во времени и от точки к точке ) (рис. 40.20, а). Амплитуда поля имеет вид набора случайных по величине и случайно расположенных выбросов . На перво,VI этапе развития генерации, когда мощность излучения еще невелика, фильтр ослабляет все выбросы в равной мере. С течением времени все большее число атомов возбуждается, и энергия  [c.814]

Мгновенная мощность излучения в режиме генерации сверхкоротких импульсов примерно в Г/АТ раз больше средней мощности и может достигать значений 10 —10 Вт. Поэтому сверхкороткие импульсы нашли широкое поле применения при исследовании самых разнообразных явлений — многофотонной ионизации атомов и молекул, вынужденного рассеяния, мгновенного нагрева вещества до очень высоких температур и т. п. Рекордно короткая длительность импульса позволила использовать сверхкороткие импульсы для изучения очень быстрых процессов, например, распада возбужденных состояний молекул, происходящего за время 10 —10 с, времени существования эффекта Керра ( 152), инерционности нелинейного фотоэффекта (см. 179) и т. д.  [c.815]

До сих пор речь шла о второй гармонике. Аналогичным образом происходит и генерация третьей гармоники", первичное излучение с частотой о создает в нелинейной среде ансамбль диполей, колеблющихся и излучающих вторичные волны с частотой 3<и. Мощность третьей гармоники пропорциональна кубу мощности падающего света и фактору  [c.843]

Если в какой-то. момент времени величина кус превышает пот, то генерация существует и ее мощность нарастает. Если же кус = к от, то устанавливается стационарный режим. В этом случае потери энергии (в том числе  [c.278]

Мощность лазерного излучения зависит не только от интенсивности накачки, но и от длительности импульса генерации. Рассмотрим на примере квантового генератора на рубине, как можно увеличить мощность его из-  [c.282]

Лазер на кристалле рубина работает обычно в импульсном режиме. Различают два режима работы рубинового лазера режим свободной генерации и режим с модуляцией добротности. Работа рубинового лазера в режиме свободной генерации продолжается до тех пор, пока интенсивность излучения импульсной лампы не станет слишком малой и уровень инверсной населенности не упадет ниже порогового. Обычно стандартные рубиновые кристаллы длиной в несколько сантиметров при диаметре 1 с.м позволяют получить в этом режиме полную энергию в импульсе излучения порядка нескольких джоулей. Длительность самого импульса генерации при этом измеряется миллисекундами и, следовательно, средняя мощность излучения генератора порядка нескольких киловатт.  [c.283]

Принцип работы лазера в режиме модуляции добротности состоит в следующем. Допустим, что внутрь оптического резонатора помещен затвор. Если затвор закрыт, то генерация не возникает и, следовательно, инверсия населенности может достигнуть очень высокого значения. При достаточной мощности накачки на метастабиль-ном уровне можно накопить почти все частицы активного вещества. Однако условие генерации выполняться не будет, так как потери резонатора слишком велики. Если быстро открыть затвор, то усиление в лазере будет существенно превышать потери и накопленная энергия выделится в виде короткого интенсивного импульса света. Поскольку в данном случае добротность резонатора изменяется от низких до высоких значений, то такой режим называется режимом модуляции добротности резонатора. При быстром открывании затвора (за время, которое короче времени развития лазерного импульса) выходное излучение состоит из одного гигантского импульса. При медленном же открывании затвора может генерироваться много импульсов.  [c.283]

Генерация оптических гармоник эс[х )ективно осуш,е-ствляется только для лазерного излучения. Здесь важна уже подчеркивавшаяся выше когерентность излучения, так как именно благодаря ей возможна сильная концентрация световой мощности в определенном направлении в пространстве и с определенной частотой. Обратим внимание в связи с этим на то, что условие синхронизма относится всякий раз к определенной частоте и определенным направлениям распространения света в данном кристалле.  [c.235]

Определим теперь мощность излучения лазера. Ограничимся более простым случаем однородного уширения и предположим, что генерация осуществляется на одной моде с частотой V. Введем суммарную мощность обоих потоков  [c.293]

В течение последних трех—пяти лет появились мощные газовые лазеры, обеспечивающие в режиме непрерывной генерации мощность порядка нескольких киловатт. Благодаря этому стало возможным осуществлять новую технологическую операцию — термическую обработку металлических поверхностей. Это особенно важно для обработки таких поверхностей, где мощный лазерный луч имеет преимущества или где геометрия обрабатываемых изделий создает трудности для применения традиционного теплового метода. Лазерная термообработка применяется для закалки стальных поверхностей, высокоскоростного отжига фольги, удаления пленок и других поверхностных осаждений, а также впекания порошкового материала в металлическую поверхность.  [c.164]


Рассмотрим некоторые особенности двух известных режимов работы ОКГ в практике уравновешивания роторов. В случае естественной генерации. мощность излучения ОКГ лежит в пределах 10 вт. Принимая диаметр фокального пятна равным 200 мкм, получим величину плотности потока излучения 3,2 X X 10 вт1см . Эта цифра относится к неподвижной лтишени. При вращении уравновешиваемого ротора со скоростью 6000 об1мин, диаметро.м 50 мм при длительности импульса ОКГ 0,5 мсек излучение распределяется на полосе длиной 8 MjH и шириной, равной диа.метру фокального пятна. При этом плотность потока излучения будет иметь порядок 6- 10 вт/см . Такая величина плотности потока приводит к низкой эффективности съема вещества с поверхности вращающегося ротора. Это объясняется тем, что значительная часть энергии отражается от обрабатываемой поверхности [10], а большая часть поглощенной идет на нагрев близлежащих к облучаемой поверхности областей. Облу-19 Зак. U00 289  [c.289]

Сигмен первым обратил внимание на то, что ггараметрпче-ский генератор может работать как идеальный ограничитель мощности в том смысле, что прп условии возбуждения генерации мощность всей накачки, прошедшей через генератор, равняется пороговой мощности.  [c.201]

Выходной мощностью называется мощность излучения при специфищфо-ванном значении управляющего тока. Как показано на рис. 8.7, СИД излучает большую мощность по сравнению с лазером, работающим ниже порога генерации. Выше порога генерации мощность лазера резко возрастает и непрерывно увеличивается вместе с силой управляющего тока. В зависимости от мощности источники света могут быть расставлены в следующем порядке лазеры, диоды с выходом излучения через боковую грань кристалла, диоды с выходом излучения через всю поверхность кристалла.  [c.106]

Обычно порог генерации в полупроводниковом лазере определяется по перегибу на ватт-амперной характеристике или при экстраполяции ватт-амперной характеристики к световой мощности, равной нулю, в соответствии с рис. 3.8.10. При вычислении пороговой плотности тока обычно не стремятся получить точное значение /пор, так как трудно измерить площадь сечения лазера с большей точностью, чем 5—10%. Однако, измеряя шумовые флуктуации интенсивности излучения, Паоли [135] удалось связать порог стабильной по амплитуде генерации с первой и второй производными вольт-амперной характеристики. Вблизи /пор увеличивается вклад стимулированного излучения, и на пороге генерации мощность шума достигает максимального значения. На рис. 7.7.7 зависимость (йУ/й ) от / сравнивается с относительной мощностью шума. Это сравнение показывает, что начало стабилизации возникает при токе несколько выше порогового, когда произойдет полное насыщение напряжения.  [c.260]

Для улучшения условий работы полупроводникового лазера и обеспечения непрерывного режима генерации кристалл необходимо охлаждать до низких температур. Мощность лазера на арсениде галлия при температуре жидкого азота в импульснопериодическом режиме составляет 100 Вт, в непрерывном режиме — 10 Вт. Лучшие образцы полупроводниковых лазеров могут работать при нормальных температурах.  [c.124]

Ячейки Керра применяются и в лазерной технике при генерации гигантских импульсов . Для этой цели затвор Керра помещается между одним из зеркал резонатора и торцом рубина. При включении ячейки Керра самовозбуждение затрудняется, что приводит к увеличению разности заселенности уровней (т. е. возбужденных атомов), необходимых для возникновения генерации. Затем, выключив ячейку Керра, можно получить мощ1юе излучеиие — гигантские импульсы . Например, используя ячейку Керра, можно заставить вьтсветиться импульс света с энергией К) Дж, генерируемый в твердотельном лазере за время порядка 10 с при этом высвечивается мощность 10 Вт = 1 ГВт.  [c.292]

Направление синхронизма. На рис. 18.8 показаны сечения поверхностей показателя преломления обыкновенных п 1 = (ш), n i — п (2со)) и необыкновенных (и и п ) волн в кристалле KDP — дигидрофосфата калия для частоты рубинового лазера (индекс 1) и его второй гармоники (индекс 2). Как видно из рис. 18.8, под некоторым углом Оо к оптической оси (0Z) кристалла происходит пересечение эллипсоида п . и сферы п1, что означает п, = пЧ в данном направлении. Поэтому направление, определяемое значением угла я%, является направлением синхронизма. Следовательно, если поляризацию падающей волны подобрать так, чтобы основная волна в кристалле являлась обыкновенной, а кристалл подобрать так, чтобы в нем данная обыкновенная волна возбуждала необыкновенную волну второй гармоники, то в направлении о должно произойти резкое возрастание мощности второй гармоники. В формуле (18.20) не учтена потеря энергии падающей волны на нагревание кристалла и на рассеяние, в результате чего при п (2со) == п (со) длина когере1ггности превращается в бесконечность. Однако в реальных средах всегда возможны подобные потери и поэтому длина когерентности даже при п (2со) — п (со) становится конечной. И в этом случае условие синхронизма является условием наилучшей генерации второй гармоники.  [c.406]

В первых работах Джордмейна и Миллера был применен кристалл LiNbOg (ниобат лития), перестройка частоты осуществлялась путем изменения температуры кристалла . В качестве волны накачки была использовапа та же длниа волны = 5300 А и наблюдалась генерация па длине — 2Х = 10 бОО А. Перестройка частоты осуществилась в диапазоне 6840—23550 А. Коэффициент полезного действия был того же порядка, что у генератора Ахма-нова и Хохлова. Выходная мощность составила сотни киловатт.  [c.410]

Условия (225.2) или (225.3) называются условиями стационарной генерации. Ему можно придать несколько иной вид, если с помощью соотношения (223.3) перейти от коэффициента усиления к мощности испускания в 1 см-5 Предполагая, кроме того, что Гэфф ма. о отличается от 1 (и, значит, / = 1п(1/Гэфф) 1 — Гэфф), и умножая левую и правую части (225.3) на площадь S поперечного сечения пучка лазера и на (w), получим  [c.781]

Сокращение длительности импульсов генерации до 10 —10 с и меньше позволяет повысить выходную пиковую мощность генератора до 10—1000 МВт и больше. Такие короткие мощные импульсы (гигантские импульсы) получаются в лазере, если он работает в режиме с управляе.мой добротностью резонатора (модуляция добротности ).  [c.283]

Аналогичным образом происходит и генерация третьей гармоники с частотой Зсо. Мощность третьей гармоники пропорциональна кубу мощности излучения падающей волны. Трудность получения генерации третьей гармоники связана с малым значением поляризуемости на тройной частоте. Это обстоятельство вынуждает применять потоки большой интенсивности, что часто приводит к разрушению материала. Однако, несмотря на эти трудности, генерация третьей гармоники наблюдается при выполнении условия синхронизма в исландском шпате (СаСОз), обладающем значительным двойным лучепреломлением, а также в некоторых оптически изотропных кристаллах (Ь1Р, ЫаС1) и жидкостях.  [c.305]


Смотреть страницы где упоминается термин Генерация мощность : [c.19]    [c.86]    [c.87]    [c.119]    [c.782]    [c.788]    [c.921]    [c.183]    [c.235]   
Оптика (1976) -- [ c.781 , c.796 ]



ПОИСК



Генерация

Генерация, оптимизация мощност

Лазерная генерация мощность накачки

Оценки материальных констант и стационарной мощности генерации

Принципиальная схема лазера. Порог генерации. Условия стационарной генерации. Добротность. Непрерывные и импульсные лазеры Повышение мощности излучения. Метод модулированной добротности Лазерное излучение

Режим свободной генерации. Регулярные затухающие пульсации мощности излучения



© 2025 Mash-xxl.info Реклама на сайте