Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловая энергия жидкостей

Окончательно получим более простое уравнение теплового баланса, т. е . сохранения тепловой энергии жидкости в виде  [c.28]

При рассмотрении течения газа с большими скоростями приходится использовать термодинамические понятия. Это связано с тем, что кинетическая энергия частиц газа может быть велика по сравнению с тепловой энергией и поэтому с изменением скорости течения температура газа существенно меняется. При изучении течения жидкостей с небольшими скоростями термодинамическими понятиями обычно не пользуются, так как тепловая энергия жидкостей часто настолько больше их кинетической энергии, что даже полное превращение последней в тепловую энергию практически не изменяет температуру жидкости.  [c.34]


Поскольку величина б/ пропорциональна увеличению объема, то в качестве рабочих тел, предназначенных для преобразования тепловой энергии в механическую, целесообразно выбирать такие, которые обладают способностью значительно увеличивать свой объем. Этим качеством обладают газы и пары жидкостей. Поэтому, например, на тепловых электрических станциях рабочим телом служат пары воды, а в двигателях внутреннего сгорания — газообразные продукты сгорания того или иного топлива.  [c.13]

Перенос тепла излучением и оптическая термометрия тесно связаны, поскольку в обоих случаях необходимо иметь соотношение между термодинамической температурой и количеством и качеством тепловой энергии, излученной поверхностью. В конце 19 в. на основе только классической термодинамики и электромагнитной теории были получены два важных результата. Первый — закон Стефана (1879 г.), согласно которому плотность энергии внутри полости пропорциональна четвертой степени температуры стенок полости. Второй —закон смещения Вина (1893 г.), который устанавливал, что, когда температура черного тела увеличивается, длина волны максимума излучения Хт уменьшается, так что произведение ХтТ сохраняется постоянным. Доказательство закона Стефана основано на трактовке теплового излучения как рабочей жидкости в тепловой машине, имеющей в качестве поршня подвижное зеркало, и использовании электромагнитной теории Максвелла, чтобы показать, что действующее на поверхность давление изотропного излучения пропорционально плотности энергии. Закон Вина вытекает из рассмотрения эффекта Доплера, возникающего при движении зеркала. В обоих законах появляется постоянный коэффициент пропорциональности, относительно которого классическая термодинамика не могла дать информации.  [c.312]

Диссипация кинетической энергии жидкости в ее тепловую энергию главным образом из-за теплопроводности приводит к затуханию колебаний и пузырек из начального состояния, характеризуемого параметрами а , pgQ, То, перейдет в состояние с параметрами йе, pgg, Tq, где  [c.281]

Внутри кристалла каждый атом удерживается симметрично направленными силами связи. На свободной поверхности кристалла или жидкости атом неуравновешен вследствие отсутствия связи с одной стороны (вакуум) или из-за ее ослабления. Это вызывает повышение энергии поверхностного слоя кристалла Если для перемещения внутри тела атому необходима энергия wo (см. рис. 1.2), то для выхода в окружающую среду w , причем w >wo. Поэтому для соединения двух монокристаллов в один требуется деформационная, или тепловая, энергия извне, превышающая граничную энергию w .  [c.12]


Для увеличения поглощения солнечного излучения на противни-поддоны опреснителей наносят покрытия, обладающие высокой степенью черноты. Применение таких покрытий повышает к. п. д. установки до 20—30% [185, 202, 203], так как поддон, интенсивно поглощая солнечную радиацию, хорошо излучает тепловую энергию в сторону жидкости.  [c.225]

Из уравнения (5.80) следует, что изменение внутренней энергии за единицу времени обусловлено диссипацией механической энергии (превращением ее в тепловую) и притоком теплоты извне за то же время. Процесс диссипации зависит только от вязкости и для идеальной жидкости (ц = 0) не имеет места. Из уравнения (5.81) следует, что изменение полной энергии складывается из изменения кинетической энергии, тепловой энергии, полученной от диссипации и притока теплоты извне.  [c.116]

Первое предположение означает, что не учитывается поверхностное натяжение и силы инерции в жидкости. Оно оправдано, если радиус пузырька R существенно больше критического радиуса зародыша Rt, а скорость и ускорение радиального движения слоев жидкости на поверхности умеренные. Температура пара в пузырьке равна температуре насыщения Т (р ) при давлении системы. Ту же температуру имеет жидкость на границе пузырька. Поток тепловой энергии к границе пузырька, обусловленный температурным напором доо - Т , определяет интенсивность испарения жидкости внутрь пузырька. Ввиду постоянной плотности пара в пузырьке движение пара в нем отсутствует, а интенсивность испарения как и в динамической схеме роста, оказывается в соответствии  [c.250]

Плазменные движители для космических кораблей, прямое преобразование тепловой энергии в электрическую, транспортировка и измерение параметров течения проводящих жидкостей, электромагнитные способы обогащения — вот далеко не полный перечень проблем, решение которых связано с развитием магнитной гидродинамики.  [c.389]

ВИЯМИ И явление не сопровождается преобразованием между тепловой и механической энергиями. Механические процессы происходят независимо от тепловых. Отсюда следует, что значение плотности жидкости несущественно для всех тепловых величин, а значение механического эквивалента тепла вообще несущественно ввиду отсутствия перехода тепловой энергии в механическую. Далее, если принять, что плотность р и величина J не влияют на изучаемый процесс передачи тепла, тО из теории размерности получается, что величина постоянной Больцмана к также несущественна, так как размерность постоянной к содержит символ единицы массы, от которой независимы размерности Н и определяющих величин. Несущественность величин р, / и А для указанных предположений легко также усмотреть из математической формулировки задачи об определении количества тепла, передаваемого телом жидкости. Эти обстоятельства оправдывают отсутствие р, J VI к среди определяющих параметров, указанных Релеем ). Однако если сохранить допущение о несущественности плотности р ) и не делать предположения, что / и /с несущественны, что является результатом дополнительных соображений, то к таблице определяющих параметров Релея необходимо присоединить величины к Т1 J, после чего получаем следующую систему определяющих параметров  [c.57]

При течении реальной жидкости силы, определяемые вязкими напряжениями, производят работу, целиком и необратимо превращающуюся в тепловую энергию.  [c.99]

Важно отметить принципиальное различие в оценке теплового эффекта несжимаемых и сжимаемых жидкостей (газов). В первом случае внутренняя энергия жидкости в про-  [c.118]

В 50-70-е годы отдел сыграл большую роль в организации большинства метрологических служб промышленных предприятий республики. Отдел тесно контактирует с метрологическими службами крупнейших предприятий республики оказывает методическую и практическую помощь в области измерения расхода газа, пара и жидкостей, учета тепловой энергии, подготовке поверителей.  [c.91]

Здесь осуществляется метрологический контроль за высокоточными средствами измерений вакуума, температуры (от - 80...5000 град. С), давления (от - 0,1...250 МПа), расхода газов и жидкостей, количества веществ, учета тепловой энергии на предприятиях Башкортостана. Поверяются все виды теплосчетчиков. Специалисты отдела принимают участие в аттестации испытательного оборудования, используемого для контроля качества различной продукции.  [c.92]


При этом атомы, занимая определенное положение в узлах кристаллической решетки, как бы успокаиваются , амплитуда их колебаний резко уменьшается, а освобождающаяся вследствие этого тепловая энергия поддерживает температуру на постоянном уровне. После того как вся жидкость закристаллизуется, прекратится выделение внутренней теплоты и температура начнет снижаться, что и отражено кривой между участками 4 и 3.  [c.13]

ОПРЕДЕЛЕНИЕ ТЕПЛОВОГО ПОТОКА ПО БАЛАНСУ ЭНЕРГИИ ЖИДКОСТИ  [c.170]

Носителями тепловой энергии являются природные системы — слои воды разной температуры, атмосфера и вода разной температуры, и искусственные — расплавленные металлы, перегретые жидкости и т. п.  [c.43]

Источники тепловой энергии в природе тепловое излучение Солнца, разность температур на поверхности и в глубине морей и Земли (до 10—20°). Искусственно тепло можно накопить с помощью расплавленных металлов, перегретых жидкостей. Можно накопить и отрицательное тепло — с помощью сильно охлажденных жидких воздуха, водорода, кислорода.  [c.140]

Увеличение числа основных единиц измерения может быть полезным только в том случае, если из дополнительных физических соображений ясно, что физические постоянные, возникающие при введении новых основных единиц измерения, несущественны. Например, если рассматривается явление, в котором имеют место механические и тепловые процессы, то для измерения количества тепла и механической энергии можно ввести две различные единицы измерения — калорию и джоуль, но при этом необходимо ввести в рассмотрение размерную постоянную А — механический эквивалент тепла. Допустим, что рассматривается явление теплопередачи в движущейся несжимаемой идеальной жидкости. В этом случае не происходит превращения тепловой энергии в механическую или обратную, и поэтому тепловые и механические процессы будут протекать независимо от значения механического эквивалента тепла. Если бы имелась возможность менять величину механического эквивалента тепла, то это никак не сказалось бы на значениях характерных величин. Следовательно, в рассматриваемом случае постоянная А не войдет в физические соотношения и увеличение числа основных единиц измерения позволит получить с помощью теории размерности дополнительные данные.  [c.159]

Из условий о несжимаемости и идеальности жидкости следует, что поле скоростей определяется кинематическими условиями и явление не сопровождается преобразованием тепловой энергии  [c.171]

В жидкостных калориметрах тепловая энергия, выделяющаяся в приемном элементе, отводится потоком жидкости. Поглощенная мощность определяется по изменению температуры жидкости на выходе калориметра по отношению к ее температуре на входе. При стационарном режиме теплообмена мощность измеряемого непрерывного излучения рассчитывается по формуле  [c.97]

Тепловая энергия жидкостей 27 Теплоемкость удельная 110, 111 гексахлорбутадиена 239 жидкостей Дау Корнинг 269, 271, 272  [c.360]

Машина, преобразующая механическую (не химическую, электрическую, тепловую) энергию жидкости в механическую же энергию твердого тела или обратно, именуется гидравлической (жидкостной) машиной. Первый вид преобразования дает машину-двигатель, виды которой рассматриваются ниже, второй — ма-шину- орудие.  [c.9]

Подобным же образом можно интерпретировать и термомеханичоский эффект. Поскольку в этой модели температура какого-либо объема жидкого Не II определяется относительной концентрацией двух жидкостей, изменение этой концентрации проявляется либо как нагрев, либо как охлаждение жидкости. Аномалии теплоемкости гелия, возникающие при испарении конденсата Бозе—Эйннзтейна, соответствуют, по Тисса, тепловой энергии, необходимой для перевода атомов гелия из сверхтекучего в нормальное состояние. Когда одному из двух объемов жидкости, соединенных между собой капилляром, сообщается тепло, температура этого объема повышается, или, другими словами, в нем возрастает относительная концентрация нормальной компоненты. Это вынуждает сверхтекучую компоненту из другого сосуда перетекать по соединительному капилляру для того, чтобы выравнять возникшую разность концентраций (фиг. 20). Течение сверхтекучей части по капилляру не сопровождается диссипацией и происходит без сопротивления, течение же нормальной жидкости подвержено трению, и потому ее поток в достаточно узком капилляре будет пренебрен имо мал. Таким образом, в этом случае должен наблюдаться перенос гелия из холодного сосуда к подогреваемому, что и имеет место в действительности. Этот процесс подобен осмотическому давлению, причем роль полупроницаемой мембраны играет здесь капилляр или трубка, заполненная порошком. Очевидным следствием этого объяснения, принадлежащего Тисса, является предсказание обратного эффекта, состоящего в том, что при продавливании гелия через тонкий капилляр он должен обогащаться сверхтекучей компонентой и температура его должна падать. Следует отметить, что это предсказание действительно предшествовало открытию механокалорического эффекта, о котором шла речь ранее.  [c.802]

Аномально большой перенос тепла в Не II также хорошо объясняется в рамках двухжидкостной модели. Явление это во многом подобно термо-механлчсскому эффекту, за исключением того, что связь между двумя сосудами осуществляется не по тонкому капилляру, а по достаточно широкой трубке, по которой возможно течение нормальной жидкости без чрезмерного трения. Подводимая к одному из сосудов мощность будет вызывать увеличение концентрации нормальной компоненты, что приведет к появлению течений жидкости для восстановления равновесно11 концентрации. Однако в этом случае течение сверхтекучей жидкости но направлению к нагревателю будет компенсироваться противотоком нормальной жидкости ц обратном направлении. Энергия, которую необходимо сообщить единице массы сверхтекучей жидкости для перевода ее в нормальную жидкость, равна полной тепловой энергии при этой температуре, так как энергия конденсата Бозе—Эйнштейна равна нулю. Поэтому-то противотоки в жидком Не II являются особым внутренним конвективным механизмом, переносящим огромную тепловую энергию. Более того, весьма правдоподобно, что такой сложный процесс передачи тепла можно использовать для объяснения наблюдаемой зависимости теплопроводности Не II от градиента температуры.  [c.802]


Фононы. Когда было выяснено, что гелий даже при абсолютном нуле будет оставаться в жидком состоянии, рядом авторов стал обсуждаться вопрос о тепловых возбуждениях в этой жидкости вблизи абсолютного нуля. Обычно допускается, что, хотя вместе с продольными волнами могут также существовать и волны сдвига, только волны перного типа возбуждаются при самых низких температурах. Нами уже рассказывалось о различных попытках экспериментального определения вклада 4)ононов в тепловую энергию жидкого гелия. Этот вклад можно опенить по теории Дебая по известной скорости первого звука или сжимаемости гелия. На основании этой теории имеем для энергии  [c.877]

Используя электроироводиую жидкость пли газ, можно создать генератор электрического тока, в котором осуществляется прямой переход тепловой энергии в электрическую находят применение магнитные дозаторы, расходомеры и насосы для перекачки ртути и жидких металлов известны и другие области применения магнитной гидрогазодннамикп в технике, например в приборостроении.  [c.178]

При движении же струйки реальной жид-КОСТ1 , отличающе11Ся от невязкой жидкости свойством ВЯЗКОСТИ, общий запас удельной механической энергии не может остаться постоянным. Удельная энергия в струнке реальной (вязкой) жидкости при установившемся движении должна неизбежно уменьшаться по мере поодвижения жидкости от одного сечения струйки до другого. Уменьшение удельной энергии в струйке реальной жидкости будет происходить потому, что часть механической энергии будет необратимо превращаться в тепловую энергию, затрачиваясь на преодоление сопротивлений, возникающих в жидкости вследствие ее вязкости.  [c.59]

Часть энергии жидкости, равная этой работе, необратимым образом переходит из механической 4юрмы в тепловую, т. е. представляет собой потерю механической энергии. Поэтому величину На называют потерей энергии. Указанный процесс необратимого преобразования механической энергии в тепловую называется диссипацией.  [c.95]

Механизм тепловой днссинации состоит в том, что прп сжатии пузырька кинетическая энергия жидкости переходит в энергию сжатия газа, температура которого при этом повышается. Из-за тенлопроводностп часть этой энергии в виде тепла переходит в жидкость. При расширении пузырька, когда газ расширяется, его температура понижается. Хотя прп этом теило 5+ идет из жидкости в газ, по из-за неравновесности т. е.  [c.126]

Основной поток проводящей жидкости создают внешние для рассматриваемого поля силы. За счет пересечения основного потока с силовыми линиями заданного магнитного поля возникает электрический ток. Все установки, создающие электрический ток таким образом, будем условно называть генераторами. К ним прежде всего относятся собственно магнитогидродинамические генераторы, преобразующие тепловую энергию в электрическую  [c.406]

Знание законов механики жидкости и газа необходимо для решения многих практических вопросов теплогазоснаб-жения и вентиляции расчета трубопроводных систем для перемещения воды, воздуха, газа и других жидкостей (водо-, воздухо-, газо-, паропроводы), сооружений и устройств для передачи тепловой энергии (тепловые сети, отопительные системы, теплообменные аппараты), конструирования машин, сообщающих жидкости механическую энергию (насосы, вентиляторы, холодильные установки), проектирования котельных агрегатов, печных и сушильных установок, воздухо- и газоочистных аппаратов, вентиляционных уст-  [c.6]

Но ведь перенос теплоты происходит и в неподвижной с виду жидкости. Например, устраивая баню на медленном огне находящемуся в пузырьке жидкому лекарству, вряд ли можно заметить движение воды в кастрюле, не говоря уж о самом лекарстве, которое также прогревается. Правда, гарантировать в этом случае отсутствие перемещения макрообъемов жидкостей не стоит, однако можно полагать, что основной механизм переноса теплоты внутри лекарства — теплопроводность, представляющая собой процесс распространения тепловой энергии, обусловленный движением микрочастиц вещества.  [c.116]


Смотреть страницы где упоминается термин Тепловая энергия жидкостей : [c.126]    [c.47]    [c.238]    [c.131]    [c.62]    [c.83]    [c.23]    [c.33]    [c.226]    [c.111]    [c.172]    [c.581]    [c.21]    [c.22]   
Жидкости для гидравлических систем (1965) -- [ c.27 ]



ПОИСК



Определение теплового потока по балансу энергии жидкости

Тепловые явления в жидкостях и газах. Закон сохранения энергии и уравнение баланса энергии

Энергия жидкостей

Энергия тепловая



© 2025 Mash-xxl.info Реклама на сайте