Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства кислорода и способы его получения

ГЛАВА III. МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ ПРИ ГАЗОВОЙ СВАРКЕ И РЕЗКЕ МЕТАЛЛОВ 8. Свойства кислорода и способы его получения  [c.21]

СВОЙСТВА КИСЛОРОДА И СПОСОБЫ ЕГО ПОЛУЧЕНИЯ  [c.24]

Каковы свойства кислорода и способы его получения  [c.14]

Механические свойства молибдена в большей степени зависят от чистоты металла, способа его получения, предшествующих механической и термической обработок (табл. 21—27). Наиболее вредными примесями, сильно понижающими пластичность металла, являются кислород, азот и углерод. Хрупкость металла проявляется при содержании кислорода 0,0002%, азота 0,003%, углерода 0,003%.  [c.460]


Способ получения титана и степень его чистоты оказывают существенное влияние на механические свойства металла особенно сильно влияет наличие в титане и его сплавах примесей кислорода, азота и водорода. Эти примеси способны давать с титаном твердые растворы внедрения, повышающие твердость, предел прочности и сильно снижающие пластические свойства металла. Наиболее пластичным и наименее прочным является титан, получаемый йодидным способом.  [c.278]

Платина для этих целей была предложена еще в 1831 г. П. Филипсом. Интересно, что в своих опытах по получению олеума К. А. Винклер воспользовался известным свойством обыкновенной концентрированной серной кислоты разлагаться при сильном нагревании на сернистый газ, кислород и пар. Пар удаляли поглощением крепкой серной кислотой, а оставшуюся сухую смесь сернистого газа и кислорода пропускали над платинированным асбестом, нагретым до умеренного красного каления . Таким образом в серный ангидрид переводилось 73,7% от всей употребленной кислоты. Эти опыты Винклер и предлагал воспроизвести в большом масштабе. В то время когда стоимость олеума была очень высокой, способ Винклера, дававший более 70% выхода серного ангидрида, считался весьма хорошим, что и служило поводом к его использованию в промышленности.  [c.155]

Для получения нужных свойств сварного соединения в металл шва можно добавлять элементы, обеспечивающие эти свойства. Этот процесс называют легированием. Легирующие элементы вводят через присадочный металл, флюс или обмазку электрода в виде порошков или ферросплавов. Кроме того, легирующие элементы поступают в шов из основного металла при его плавлении. Необходимо, чтобы легирующие элементы имели меньшее сродство к кислороду, чем свариваемый металл. В противном случае вместе с ними нужно вводить более активный элемент, который свяжет кислород и уменьшит окисление легирующих элементов. Окислы легирующих элементов должны растворяться в шлаке, а не в металле шва. При расчете легирования учитывают долю основного металла в металле шва, а также потери легирующих элементов на разбрызгивание, испарение, образование химических соединений. Эти потери зависят от химической активности легирующих элементов, способа, режимов и особенностей условий сварки и учитываются коэффициентами перехода. Например, при ручной дуговой сварке коэффициент перехода марганца из электрода с качественной обмазкой может быть 0,45...0,55.  [c.23]


Большой интерес для современного машиностроения представляют опоры трения, выполненные из титана. Однако в литературе пока встречается ограниченное число случаев их успешного практического использования. Это объясняется склонностью титановых сплавов к схватыванию и задиру при трении, к пластическому деформированию и наклепу поверхностного слоя, повышенному износу и переносу титана на поверхность трения контртела. Смазывание жидкими смазочными материалами не улучшает антифрикционные свойства пары трения, а твердые смазки плохо удерживаются на поверхности трения из-за низкой адгезии к титану. Для повышения антифрикционных свойств титана применяют упрочнение его поверхности путем насыщения кислородом (оксидирование), азотом (азотирование), нанесения электролитических покрытий (хромирование, никелирование и др.), электролитического сульфидирования и обработки давлением обкатыванием и виброобкатыванием. Наиболее технологичным и эффективным является способ термического оксидирования, состоящий в нагреве в электрических печах с доступом воздуха при температуре 700—800 °С. Результаты упрочнения титана различными способами химико-термической обработки даны в работе [34], а подробная технология термического оксидирования в [83]. Авторы последней работы рекомендуют материалы подшипников с валом из оксидированного титана и допускаемые параметры трения, полученные на машинах трения МИ-1М, СМЦ-2 и Б-4. Наиболее употребительные из этих материалов приведены в табл. 41, откуда видно, что  [c.156]

Более эффективным методом модифицирования свойств связующего является обработка его воздухом при температуре 220—320°С. Этот способ отличается высоким выходом высокотемпературного пека (до 97%)-Кислород воздуха способствует в данном случае дегидрогенизации и конденсации молекул. Вследствие этого уменьшается количество масел в пеке и происходит изменение фракционного состава. Однако, как указывает Б. Томас [2-58], пеки, полученные обработкой воздухом, не пользуются популярностью у изготовителей электродов для производства алюминия вследствие ил пониженной термической стабильности.  [c.59]

Электрохимический способ получения оксидных покрытий является весьма универсальным и дает возможность в относительно щироких пределах управлять толщиной и свойствами оксидных пленок. Сущность его состоит в электрохимической анодной обработке деталей из различных конструкционных металлов в водных растворах электролитов. При этом выделяющийся в результате электролиза воды активный кислород образует на металлах окисные пленки.  [c.103]

Предложен способ получения легированных алюминидных покрытий в расплаве, содержащем до 20% А1 и его соединений, более 30% Са (могут быть добавлены Ва, Mg, 5г) и до 5% Си, РЬ и 2п. Температура плавления ванны — около 800° С. Насыщение ведут в интервале температур 900—1200° С до 1 ч в зависимости от состава обрабатываемого материала и требуемой толщины слоя. Присадка в ванну Т1, 2г, V, Ре, Мп, Со, N1, Мо, Сг, Се, V позволяет получать сложнолегированные алюминидные покрытия с повышенными защитными свойствами, в частности с более высокой термостойкостью по сравнению с чистыми алюминидными покрытиями. Защитной атмосферой при использовании предложенной ванны служит аргон. Способ рекомендуется для изделий, работающих при высокой температуре в условиях воздействия газовых сред, содержащих кислород и серу.  [c.294]

В сухом воздухе при обычных температурах галлий почти не окисляется при нагревании он энергично соединяется с кислородом, образуя белый окисел ОагОз. Наряду с этим окислом галлия при определенных условиях образуются и другие его окислы (СаО и ОагО). Гидроокись галлия Оа(ОН)з амфотерна и поэтому легко растворима в кислотах и щелочах, с которыми образует галла-ты, близкие по свойствам к алюминатам. В связи с этим при получении глинозема из алюминиевых руд галлий вместе с алюминием переходит в растворы и затем сопутствует ему во всех последующих операциях. Некоторая повышенная концентрация галлия наблюдается в анодном сплаве при электролитическом рафинировании алюминия, в оборотных алюминатных растворах при производстве глинозема по способу Байера и в маточных растворах, остающихся после неполной карбонизации алюминатных растворов.  [c.447]


Уже проведение кратковременных испытаний на растяжение при высоких температурах в вакууме показало, что предварительная обработка и способ получения молибдена и его сплавов оказывают существенное влияние на характеристики механических свойств. Так, рекристаллизационный отжиг заметно снижает предел прочности при ко.мнатной и повышенных те.мпературах и повышает пластичность в интервале температур 815—I ЮО С (фиг. 175). Даже разница в условиях спекания порошкообразного молибдена (в вакууме или в водороде) оказывает определенное влияние на механические свойства. Сравнение кривых деформации образцов молибдена, изготовленных методом порошковой металлургии и путем плавки в вакуумной печи, показано на фиг. 176. При понижении температуры испытания влияние способа изготовления молибдена на ход кривых деформации проявляется особенно резко. Это послужило основанием к проведению серийных испытаний молибдена на растяжение при различных температурах (фиг. 177) оказалось, что критическая температура перехода молибдена из вязкого в хрупкое состояние (определялась в основном по значениям относительного сужения) достаточно высока, и это следует учитывать при конструктивных расчетах. Дальнейшие испытания показали также, что критическая температура зависит от скорости деформации, условий нагружения, величины зерна и наличия загрязнений, в первую очередь углерода, кислорода и азота, образующих с молибденом твердый раствор.  [c.764]

Редкоземельные металлы, как правило, мягки и ковки, но их ковкость и твердость в большой степени зависят от примесей. Большое содержание таких примесей, как кислород, сера, азот и углерод, сильно изменяет механические свойства, повышая твердость и понижая пластичность. Например, бескислородный церий весьма ковок и легко прокатывается, тогда как включения окислов, образующихся при переплавке, сильно снижак>т ковкость. Рхли степень чистоты редкоземельных металлов не очень высока, то обычно металлы электролитического производства оказываются тверже металлов, полученных другими способами. Твердость зависит также до некоторой степени от способа отливки металла и его возраста. Хранение электролитического церия при комнатной температуре сопровождается его постепенным старением, в процессе которого он становится все тверже.  [c.601]

Очень большое влияние на свойства жаропрочных сталей и сплавов оказывают даже ничтожно малые количества легкоплавких примесей — олова, свинца, висмута, сурьмы, серы, фосфора и др., а также газов — кислорода, водорода. Сосредоточиваясь преимущественно на границах зерен у-твердого раствора, они резко снижают межкристаллическую прочность сплава, вызывая его преждевременное разрушение под действием температуры и нагрузки. Например, увеличение содержания сурьмы или свинца от 0,002 до 0,004% приводит более чем к двукратному падению жаропрочности никелевого сплава ЭИ437. Еще не так давно вопросы чистоты, касающиеся легкоплавких п 5имесей жаропрочных аустенитных сталей и сплавов, не привле-ка ли к себе внимания. Теперь однозначно установлено, что непременным условием получения стабильно высоких жаропрочных свойств является чистота шихтовых материалов и применение современных способов выплавки и обработки сталей и сплавов. На этом вопросе автор специально остановится в гл. VHI. Данные  [c.47]

Титан не относится к числу редких металлов, так как находится в земной коре в значительном количестне. Он применялся главным образом в качестве легирующей дсбавки к сталям и другим сплавам. Использованию же его как основы сплавов мешали трудности получения титана в чистом виде, без значительного количества примесей, легко попадающих в него при плавке вследствие высской химической активности расплавленного металла, жадно поглощающего из окружающей среды кислород, азот, водород и другие элементы. В настоящее время разработаны способы получения титана достаточней чистоты (до 99,9 /о Т ), для которого установлены следующие свойства удельный вес —4,5 температура плавления —1660 " С механические свойства = 30 кг/мм -, а = 19 кг млг Ь = 40",о ф = бО /о Нц = 90.  [c.368]

Влияние способа получения ниобия на свойства сварных соединений. Металлический ниобий получают восстановлением различных его солей или окислов с последующим спеканием и переплавкой порошка в вакуумных печах. Имеется несколько методов получения металлического порошка ниобия натриетермический, матниетермический, карботермический и др. Последним, карботермическим способом, состоящим в восстановлении пятиокиси ниобия карбидом ниобия, получается металл наиболее высокой чистоты. Этот способ благодаря целому ряду преимуществ перед остальными и применяется наиболее широко Б последнее время. Для получения компактного металла порошок спекают и переплавляют в дуговых или электроннолучевых вакуумных печах. При этом происходит дополнительная очистка ниобия от примесей внедрения (кислорода, азота, водорода и углерода).  [c.114]

Поглощение газов адсорбирующими средствами при низких t°, Одним из методов получения весьма высокого вакуума является поглощение остатков газа древесным углем при низких Благодаря пористости угля его активная поверхность очень велика, и количество поглощенных им газов может в несколько сот раз превосходить объем самого угля. Для того чтобы это поглощение действительно происходило, необходимо сначала уголь определенным образом обработать, или актрт-вировать. Для этой цели достаточно нагревать уголь в вакууме до ок. 500° столько времени, пока не прекратится заметное выделение ранее поглощенных им газов. Обычно небольшая пробирка с углем припаивается к прибору, в к-ром необходимо получить высокий вакуум, и уголь активируется путем предварительного прогрева. После этого прибор отпаивают от насоса. Пробирку с углем погружают в жидкий возд- , вследствие чего уголь адсорбирует остатки газа, находившегося в приборе. После этого пробирку с углем отпаивают от прибора. Этим методом можно получить вакуум не менее высокий, чем другими способами, описанными выше. Особенно хорошей адсорбирующей способностью обладает уголь кокосового ореха. Все указанные средства обезгаживания применяются не только при производстве собственно П. п., НОИ при производстве приборов, к-рые затем будут наполнены каким-либо разреженным газом. Это необходимо потому, что для наполнения их применяют почти исключительно инертные газы (аргон, неон, гелий, криптон и ксенон), электрич. свойства к-рых могут весьма сильно меняться от ничтожных примесей активных газов—кислорода, азота, углекислоты и др., даже если они подмешаны в количестве 0,01—0,1%. Поэтому тщательное обезгаживание бывает иногда еще более необходимо при изготовлении газонаполненного прибора, чем пустотного.  [c.271]


Антиокислительная стабильность. Антиокислительная стабильность минеральных масел является одной из весьма важных характеристик их эксплуатационных свойств. Независимо от условий применения в результате действия кислорода воздуха минеральное масло окисляется с образованием продуктов окисления (кислоты, смолы, асфальтены, карбены, карбоиды и др.), ухудшающих смазочные свойства масел. При этом изменяются также некоторые физико-химические свойства масла, например, увеличивается вязкость, повышается кислотное число и т. д. Чем выше рабочая температура масла и чем больше длительность пребывания постоянного объема его в механизме, тем интенсивнее протекает окисление и тем больше продуктов окисления накапливается в масле. Все это может привести к нарушению нормальной работы механизма (загрязнению, коррозии, прекращению циркуляции масла в системе и т. п.) и вызывает необходимость замены отработавшего масла свен<им. Устойчивость масла против окисления зависит от его происхождения, способа получения и состава и обеспечивается в необходимых пределах подбором сырья, метода очистки и в некоторых случаях добавлением антиокислительпых присадок.  [c.14]

Особое место среди примесей в кремнии и германии занимает кислород, который является остаточной, в больщинстве случаев вредной примесью его концентрация зависит от способа получения кристалла. О поведении кислорода в 51 и Ое известно, что он в рещетке основного вещества присутствует либо в атомарном виде, либо образует комплексы типа 51(0е)0 . При этом, если атомы кислорода размещаются в междоузлиях, то они, по-видимому, электрически неактивны. Донорными же свойствами обладают некоторые комплексы 51(0е)0 . Больще всего кислорода обычно содержат монокристаллы кремния (германия), выращенные из кварцевых контейнеров (содержание кислорода в кремнии составляет 10 см , см. гл. 5). Обычно при выращивании из расплава больщая часть атомов кислорода размещается в междоузлиях и образует электрически неактивные комплексы 510г, хотя в малых концентрациях могут образовываться и электрически активные комплексы более высокого порядка. Процессы, связанные с нагревом кристалла (термообработка, диффузия), могут приводить к перераспределению по концентрации различных типов кремний(германий)-кислородных комплексов. Это перераспределение происходит в тех случаях, когда распределение кислородных комплексов неравновесно (твердый раствор 51(0) находится в пересыщенном состоянии при температуре обработки). Изменение концентрации электрически активных комплексов приводит к изменению электрических свойств кристалла. В частности, при низкотемпературной (300-500°С) обработке в кристаллах 51 образуются термодоноры 5104 в измеримых концентрациях, которые устойчивы при 430°С комплексы  [c.131]

Показателен получивший достаточно широкое распространение LF-npone , разработанный в Японии. Сейчас наименованием LF-процесс обозначаются многие разновидности способа. В том виде, как он был предложен, процесс включает перемешивание продувкой металла аргоном в ковше, дуговой подогрев и обработку металла синтетическим шлаком в процессе его перемешивания аргоном (рис. 35). Емкость агрегатов-ковшей на разных заводах колеблется от 30 до 150 т. Процесс обеспечивает не только получение заданного химического состава и температуры металла, но и снижение количества неметаллических включений в результате удаления серы и кислорода, что привело к значительному улучшению механических свойств. Такой агрегат может устанавливаться в любом сталеплавильном цехе.  [c.244]

Ранее уже отмечалось, что водород рассматривается в перспективе, как топливо, изначально обеспечивающее высокую-экологическую чистоту при сгорании. Главным его достоинством является отсутствие углерода, продуктами сгорания которого становятся угарный газ (оксид углерода) и углекислый газ (диоксид углерода). Первый из них представляет собой крайне ядовитое вещество, применявшееся даже в качестве боевого. Поэтому для нейтрализации этого газа путем дожигания созданы и применяются на практике различные технологии, которые позволяют в значительной степени устранить Опасность загрязнения атмосферного воздуха этим ядом. В то же время углекислый газ, постоянно присутствующий в атмосфере и потому не являющийся сильным ядом, оказывается неустранимым следствием сгорания углеродосодержащих топлив. Однако перспектива увеличения энергетического насыщения транспорта содержит опасность такого увеличения общей концентрации этого вещества в атмосфере, которое может привести к смещению теплового равновесия с трудно предсказуемыми последствиями. Углекислый газ, в отличие от азота и кислорода, поглощает инфракрасное излучение земной поверхности, превращая, таким образом, атмосферу Земли в ловушку солнечного излучения видимая часть солнечного спектра (примерно 80% всей энергии излучения) свободно проходит через атмосферу, нагревает поверхность земли, которая в свою очередь излучает энергию, но уже в инфракрасной части спектра. Ни один из применяемых на практике нейтрализаторов не избавляет от выбросов углекислого газа. Более того, практически отсутствуют даже перспективные технологии, освобождающие от него продукты сгорания углеводородных топлив. Именно поэтому водородное топливо продолжает оставаться главенствующим вариантом экологически чистой технологии транспорта, несмотря на многие недостатки и присущие ему низкие значения важных качественных показателей. Важно также отметить, что под водородным топливом понимается не обязательно чистый водород. Последний может составлять преобладающую часть топлива, как метан в природном газе. Остальная же часть в зависимости от способов получения может быть представлена различными горючими и негорючими газами, меняя тем самым не только энергетические, но и экологические свойства этого топлива. Так водородное топливо, получаемое путем конверсии природного газа, содержит значительную долю угарного газа, сгорание которого приводит к образованию того же диоксида углерода. Более чистое топливо может быть получено по разработанной авторами технологии с использованием гидрореагирующих металлов  [c.7]


Смотреть страницы где упоминается термин Свойства кислорода и способы его получения : [c.273]    [c.133]    [c.126]    [c.422]    [c.250]    [c.394]   
Смотреть главы в:

Газовая сварка и резка металлов  -> Свойства кислорода и способы его получения

Газовая сварка и резка металлов Издание 3  -> Свойства кислорода и способы его получения



ПОИСК



16 — Способы получения

584-589 - Свойства 585-589 - Способы

КИСЛОРОД Свойства

Кислород



© 2025 Mash-xxl.info Реклама на сайте